Suppression of runaway of electrons in a Lorentz plasma. II. crossed electric and magnetic fields

1970 ◽  
Vol 4 (3) ◽  
pp. 441-450 ◽  
Author(s):  
Barbara Abraham-Shrauner

Suppression of runaway of electrons in a weak, uniform electric field in a fully ionized Lorentz plasma by crossed magnetic and electric fields is analysed. A uniform, constant magnetic field parallel to a constant or harmonically time varying electric field does not alter runaway from that in the absence of the magnetic field. For crossed, constant fields the passage to runaway or to free motion as described by constant drift motion and spiral motion about the magnetic field is lengthened in time for strong magnetic fields. The new ‘runaway’ time scale is roughly the ratio of the cyclotron frequency to the collision frequency squared for cyclotron frequencies much greater than the collision frequency. All ‘runaway’ time scales may be given approximately by t2E Teff where tE is the characteristic time of the electric field and Teff is the ffective collision time as estimated from the appropriate component of the electrical conductivity.

This paper deals with the observed effect of simultaneous electric and magnetic fields on certain of the more intense helium lines, and is further limited to the case where the fields are uniform and parallel. The effect of parallel fields was first considered by Garbasso, who adopted the classical view of the “rough” Stark-effect on H β as given by Voigt, and concluded that the effects due to the two fields should be simply superimposed. Shortly after this he was able to make visual observations which were restricted to H α owing to intensity requirements. A source of the Lo Surdo type was placed along the axis of the hollow poles of a Weiss magnet, and the analysis made with a Michelson echelon. In the electric field alone Garbasso observed two parallel components and one undisplaced perpendicular component. This corresponds to a so-called “rough” analysis of the Stark-effect in which the individual components are not observed. In the magnetic field he found a normal Zeeman pattern. With combined parallel fields there appeared two parallel components in the position of the Stark components of like polarisation, and two symmetrically placed perpendicular components with the normal Zeeman separation. This simple result could not be given a satisfactory interpretation on classical theory.


1972 ◽  
Vol 50 (6) ◽  
pp. 607-616 ◽  
Author(s):  
V. Ramaswamy ◽  
H. W. Dosso ◽  
J. T. Weaver

The solutions for low-frequency fields of a horizontal magnetic dipole embedded within a two-layer conductor are derived. For convenience, the solutions are expressed in dimensionless form. The amplitudes and phases of the electric and magnetic fields along the surface of the bottom layer are calculated numerically and their dependence on the ratio of the conductivities of the two layers is investigated. Results indicate that, in general, the electric field induced by a subsurface horizontal magnetic dipole is more sensitive to the bottom-layer conductivity than is the magnetic field. Some of the results discussed in this paper are of interest in studying the seabed conductivity.


Author(s):  
Md Abdulla Al Masud ◽  
Noel D’Souza ◽  
Paris von Lockette ◽  
Zoubeida Ounaies

In this study, we demonstrate the electric and magnetic manipulation of nanoscale M-type Barium Hexaferrite (nBF) in polydimethylsiloxane (PDMS) to engineer a multifunctional nanocomposite with improved dielectric and magnetic properties. First, we synthesized the single crystal nBF via the hydrothermal synthesis route. The hydrothermal temperature, duration, and surfactant conditions were optimized to improve the magnetic properties of the nBFs, with further improvement achieved by post-annealing. The annealed nBFs were aligned dielectrophoretically (DEP) in the polymer matrices by applying an AC electric field. Under the influence of this electric field, nBFs were observed to rotate, align and form chains within the polymer matrix. Optical microscopy (OM) imaging was used to determine the electrical alignment conditions (duration, magnitude, and frequency) and these parameters were used to fabricate the composites. A Teflon setup with Indium Tin Oxide (ITO) coated Polyethylene Terephthalate (PET) was used, where the ITO coatings act as electrodes for the electric field-manipulation. To simultaneously apply the magnetic field, this Teflon setup is placed between two permanent magnets capable of generating a 0.6 T external magnetic field. Along with electric and magnetic fields, concurrent heating was applied to cure the PDMS and freeze the microstructure formed due to electric and magnetic fields. Upon completion of the curing step, parallel chain formation is observed under OM. The X-Ray Diffraction (XRD) results also confirm that the particles are magnetically oriented in the direction of the magnetic field within the chain. Vibrating Sample Magnetometry (VSM) measurements and dielectric spectroscopy are used to characterize the extent of anisotropy and improvement in dielectric and magnetic properties compared to random composites. We find that simultaneous electric and magnetic field alignment improves the dielectric properties by 12% compared to just magnetic alignment. We also observe 19% improved squareness ratio when both fields are applied. The possibility of simultaneous electrical and magnetic alignment of magnetic nanoparticles will open up new doors to manipulate and design particle-modified polymers for various applications.


1975 ◽  
Vol 53 (2) ◽  
pp. 133-139 ◽  
Author(s):  
M. P. Srivastava ◽  
P. S. Grover

The variation of the positron annihilation rate λa in noble gases He, Ne, and Ar has been studied in the presence of an external applied magnetic field, when the electric field is kept constant. It is found that λa increases as the magnetic field is increased. In the case of Ar, the dependence is quite appreciable whereas in He and Ne it is comparatively smaller.


2014 ◽  
Vol 92 (10) ◽  
pp. 1241-1248 ◽  
Author(s):  
De-hua Wang

The photodetachment of the H– ion in perpendicular electric and magnetic fields near a metal surface has been investigated on the basis of the semiclassical closed-orbit theory. Firstly, we give a clear physical picture of the detached electron’s movement and find out the closed orbits of this system. Then we put forward an analytical formula for calculating the photodetachment cross section. It is found that the perpendicular electric and magnetic fields can produce some interesting effects. As the magnetic field is relatively weak, the influence of the electric field and the electrostatic potential dominates and the oscillatory structure in the photodetachment cross section exhibits a smoothly oscillating curve. As we keep the electric field and the ion–surface distance unchanged, with the increase of the magnetic field strength, the number of closed orbits is increased and the oscillatory structure in the photodetachment cross section is characterized by broad Landau level envelops. Therefore, we can use the perpendicular electric and magnetic fields to control the photodetachment of H– near a metal surface. Our study may guide future experimental research on the photodetachment microscopy of negative ion in external fields near surfaces.


2016 ◽  
Vol 34 (1) ◽  
pp. 55-65 ◽  
Author(s):  
A. D. M. Walker ◽  
G. J. Sofko

Abstract. When studying magnetospheric convection, it is often necessary to map the steady-state electric field, measured at some point on a magnetic field line, to a magnetically conjugate point in the other hemisphere, or the equatorial plane, or at the position of a satellite. Such mapping is relatively easy in a dipole field although the appropriate formulae are not easily accessible. They are derived and reviewed here with some examples. It is not possible to derive such formulae in more realistic geomagnetic field models. A new method is described in this paper for accurate mapping of electric fields along field lines, which can be used for any field model in which the magnetic field and its spatial derivatives can be computed. From the spatial derivatives of the magnetic field three first order differential equations are derived for the components of the normalized element of separation of two closely spaced field lines. These can be integrated along with the magnetic field tracing equations and Faraday's law used to obtain the electric field as a function of distance measured along the magnetic field line. The method is tested in a simple model consisting of a dipole field plus a magnetotail model. The method is shown to be accurate, convenient, and suitable for use with more realistic geomagnetic field models.


2021 ◽  
Author(s):  
Karthikeyan Rajagopal ◽  
Irene Moroz ◽  
Balamurali Ramakrishnan ◽  
Anitha Karthikeyan ◽  
Prakash Duraisamy

Abstract A Morris-Lecar neuron model is considered with Electric and Magnetic field effects where the electric field is a time varying sinusoid and magnetic field is simulated using an exponential flux memristor. We have shown that the exposure to electric and magnetic fields have significant effects on the neurons and have exhibited complex oscillations. The neurons exhibit a frequency-locked state for the periodic electric field and different ratios of frequency locked states with respect to the electric field frequency is also presented. To show the impact of the electric and magnetic fields on network of neurons, we have constructed different types of network and have shown the network wave propagation phenomenon. Interestingly the nodes exposed to both electric and magnetic fields exhibit more stable spiral waves compared to the nodes exhibited only to the magnetic fields. Also, when the number of layers are increased the range of electric field frequency for which the layers exhibit spiral waves also increase. Finally the noise effects on the field affected neuron network are discussed and multilayer networks supress spiral waves for a very low noise variance compared against the single layer network.


2007 ◽  
Vol 21 (10) ◽  
pp. 1715-1720 ◽  
Author(s):  
NANA METREVELI ◽  
ZAUR KACHLISHVILI ◽  
BEKA BOCHORISHVILI

The transverse runaway (TR) is a phenomenon whereby for a certain combination of energy and momentum scattering mechanisms of hot electrons, and for a certain threshold of the applied electric field, the internal (total) field tends to infinity. In this work, the effect of the magnetic field on the transverse runaway threshold is considered. It is shown that with increasing magnetic field, the applied critical electric fields relevant to TR decrease. The obtained results are important for practical applications of the TR effect as well as for the investigation of possible nonlinear oscillations that may occur near the TR threshold.


2007 ◽  
Vol 25 (3) ◽  
pp. 453-464 ◽  
Author(s):  
L. Torrisi ◽  
D. Margarone ◽  
S. Gammino ◽  
L. Andò

Laser-generated plasma is obtained in high vacuum (10−7 mbar) by irradiation of metallic targets (Al, Cu, Ta) with laser beam with intensities of the order of 1010 W/cm2. An Nd:Yag laser operating at 1064 nm wavelength, 9 ns pulse width, and 500 mJ maximum pulse energy is used. Time of flight measurements of ion emission along the direction normal to the target surface were performed with an ion collector. Measurements with and without a 0.1 Tesla magnetic field, directed along the normal to the target surface, have been taken for different target-detector distances and for increasing laser pulse intensity. Results have demonstrated that the magnetic field configuration creates an electron trap in front of the target surface along the axial direction. Electric fields inside the trap induce ion acceleration; the presence of electron bundles not only focuses the ion beam but also increases its energy, mean charge state and current. The explanation of this phenomenon can be found in the electric field modification inside the non-equilibrium plasma because of an electron bunching that increases the number of electron-ion interactions. The magnetic field, in fact, modifies the electric field due to the charge separation between the clouds of fast electrons, many of which remain trapped in the magnetic hole, and slow ions, ejected from the ablated target; moreover it increases the number of electron-ion interactions producing higher charge states.


2018 ◽  
Vol 96 (9) ◽  
pp. 961-968
Author(s):  
De-hua Wang

We examine the dynamics of electrons photodetached from the H– ion in time-dependent electric and magnetic fields for the first time. The photodetachment microscopy patterns caused by a time-dependent gradient electric field and magnetic field have been analyzed in great detail based on the semiclassical theory. The interplay of the gradient electric field and magnetic field forces causes an intricate shape of the electron wave and multiple electron trajectories generated by a fixed energy point source can arrive at a given point on the microchannel-plate detector. The interference effects between these electron trajectories cause the oscillatory structures of the electron probability density and electron current distribution, and a set of concentric interference fringes are found at the detector. Our calculation results suggest that the photodetachment microscopy interference pattern on the detector can be adjusted by the electron energy, magnetic field strength, and position of the detector plane. Under certain conditions, the interference pattern in the electron current distribution might be seen on the detector plane localized at a macroscopic distance from the photodetachment source, which can be observed in an actual photodetachment microscopy experiment. Therefore, we make predictions that our work should serve as a guide for future photodetachment microscopy experiments in time-dependent electric and magnetic fields.


Sign in / Sign up

Export Citation Format

Share Document