scholarly journals Improved performance of stellarator coil design optimization

2020 ◽  
Vol 86 (2) ◽  
Author(s):  
Jim-Felix Lobsien ◽  
Michael Drevlak ◽  
Thomas Kruger ◽  
Samuel Lazerson ◽  
Caoxiang Zhu ◽  
...  

Following up on earlier work which demonstrated an improved numerical stellarator coil design optimization performance by the use of stochastic optimization (Lobsien et al., Nucl. Fusion, vol. 58 (10), 2018, 106013), it is demonstrated here that significant further improvements can be made – lower field errors and improved robustness – for a Wendelstein 7-X test case. This is done by increasing the sample size and applying fully three-dimensional perturbations, but most importantly, by changing the design sequence in which the optimization targets are applied: optimization for field error is conducted first, with coil shape penalties only added to the objective function at a later step in the design process. A robust, feasible coil configuration with a local maximum field error of 3.66 % and an average field error of 0.95 % is achieved here, as compared to a maximum local field error of 6.08 % and average field error of 1.56 % found in our earlier work. These new results are compared to those found without stochastic optimization using the FOCUS and ONSET suites. The relationship between local minima in the optimization space and coil shape penalties is also discussed.

2021 ◽  
Vol 7 (1) ◽  
pp. 540-555
Author(s):  
Hayley L. Mickleburgh ◽  
Liv Nilsson Stutz ◽  
Harry Fokkens

Abstract The reconstruction of past mortuary rituals and practices increasingly incorporates analysis of the taphonomic history of the grave and buried body, using the framework provided by archaeothanatology. Archaeothanatological analysis relies on interpretation of the three-dimensional (3D) relationship of bones within the grave and traditionally depends on elaborate written descriptions and two-dimensional (2D) images of the remains during excavation to capture this spatial information. With the rapid development of inexpensive 3D tools, digital replicas (3D models) are now commonly available to preserve 3D information on human burials during excavation. A procedure developed using a test case to enhance archaeothanatological analysis and improve post-excavation analysis of human burials is described. Beyond preservation of static spatial information, 3D visualization techniques can be used in archaeothanatology to reconstruct the spatial displacement of bones over time, from deposition of the body to excavation of the skeletonized remains. The purpose of the procedure is to produce 3D simulations to visualize and test archaeothanatological hypotheses, thereby augmenting traditional archaeothanatological analysis. We illustrate our approach with the reconstruction of mortuary practices and burial taphonomy of a Bell Beaker burial from the site of Oostwoud-Tuithoorn, West-Frisia, the Netherlands. This case study was selected as the test case because of its relatively complete context information. The test case shows the potential for application of the procedure to older 2D field documentation, even when the amount and detail of documentation is less than ideal.


Nanoscale ◽  
2015 ◽  
Vol 7 (30) ◽  
pp. 13051-13060 ◽  
Author(s):  
Ruiqing Xing ◽  
Qingling Li ◽  
Lei Xia ◽  
Jian Song ◽  
Lin Xu ◽  
...  

3DIO macroporous In2O3 films with additional via-hole architectures were fabricated and Au NPs were loaded, which were applied for detecting of acetone gas in exhaled breath.


Author(s):  
E. Sandgren ◽  
S. Venkataraman

Abstract A design optimization approach to robot path planning in a two dimensional workplace is presented. Obstacles are represented as a series of rectangular regions and collision detection is performed by an operation similar to clipping in computer graphics. The feasible design space is approximated by a discrete set of robot arm and gripper positions. Control is applied directly through the angular motion of each link. Feasible positions which are located between the initial and final robot link positions are grouped into stages. A dynamic programming algorithm is applied to locate the best state within each stage which minimizes the overall path length. An example is presented involving a three link planar manipulator. Extensions to three dimensional robot path planning and real time control in a dynamically changing workplace are discussed.


Author(s):  
Juri Bellucci ◽  
Filippo Rubechini ◽  
Andrea Arnone

This work aims at investigating the impact of partial admission on a steam turbine stage, focusing on the aerodynamic performance and the mechanical behavior. The partialized stage of a small steam turbine was chosen as test case. A block of nozzles was glued in a single “thick nozzle” in order to mimic the effect of a partial admission arc. Numerical analyses in full and in partial admission cases were carried out by means of three-dimensional, viscous, unsteady simulations. Several cases were tested by varying the admission rate, that is the length of the partial arc, and the number of active sectors of the wheel. The goal was to study the effect of partial admission conditions on the stage operation, and, in particular on the shape of stage performance curves as well as on the forces acting on bucket row. First of all, a comparison between the flow field of the full and the partial admission case is presented, in order to point out the main aspects related to the presence of a partial arc. Then, from an aerodynamic point of view, a detailed discussion of the modifications of unsteady rows interaction (potential, shock/wake), and how these ones propagate downstream, is provided. The attention is focused on the phenomena experienced in the filling/emptying region, which represent an important source of aerodynamic losses. The results try to deepen the understanding in the loss mechanisms involved in this type of stage. Finally, some mechanical aspects are addressed, and the effects on bucket loading and on aeromechanical forcing are investigated.


Author(s):  
Hashem Ashrafiuon

Abstract Design optimization of aircraft engine-mount systems for vibration isolation is presented. The engine is modeled as a rigid body connected to a flexible base representing the nacelle. The base is modeled with mass and stiffness matrices and structural damping using finite element modeling. The mounts are modeled as three-dimensional springs with hysteresis damping. The objective is to select the stiffness coefficients and orientation angles of the individual mounts to minimize the transmitted forces from the engine to the base. Meanwhile, the mounts have to be stiff enough not allowing engine deflection to exceed its limits under static and low frequency loadings. It is shown that with an optimal system the transmitted forces may be reduced significantly particularly when mount orientation angles are also treated as design variables. The optimization problems are solved using a Constraint Variable Metric approach. The closed form derivatives of the engine vibrational amplitudes with respect to design variables are derived in order to achieve a more effective optimization search technique.


2020 ◽  
Vol 36 (16) ◽  
pp. 4406-4414 ◽  
Author(s):  
Lifan Chen ◽  
Xiaoqin Tan ◽  
Dingyan Wang ◽  
Feisheng Zhong ◽  
Xiaohong Liu ◽  
...  

Abstract Motivation Identifying compound–protein interaction (CPI) is a crucial task in drug discovery and chemogenomics studies, and proteins without three-dimensional structure account for a large part of potential biological targets, which requires developing methods using only protein sequence information to predict CPI. However, sequence-based CPI models may face some specific pitfalls, including using inappropriate datasets, hidden ligand bias and splitting datasets inappropriately, resulting in overestimation of their prediction performance. Results To address these issues, we here constructed new datasets specific for CPI prediction, proposed a novel transformer neural network named TransformerCPI, and introduced a more rigorous label reversal experiment to test whether a model learns true interaction features. TransformerCPI achieved much improved performance on the new experiments, and it can be deconvolved to highlight important interacting regions of protein sequences and compound atoms, which may contribute chemical biology studies with useful guidance for further ligand structural optimization. Availability and implementation https://github.com/lifanchen-simm/transformerCPI.


Author(s):  
Chan-Sol Ahn ◽  
Kwang-Yong Kim

Design optimization of a transonic compressor rotor (NASA rotor 37) using the response surface method and three-dimensional Navier-Stokes analysis has been carried out in this work. The Baldwin-Lomax turbulence model was used in the flow analysis. Three design variables were selected to optimize the stacking line of the blade. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, adiabatic efficiency was successfully improved. It was found that the optimization process provides reliable design of a turbomachinery blade with reasonable computing time.


Sign in / Sign up

Export Citation Format

Share Document