Temporal variation in the fatty acid composition of ovigerous females and embryos of the squat lobster Pleuroncodes monodon (Decapoda, Munididae)

2017 ◽  
Vol 98 (8) ◽  
pp. 1977-1990 ◽  
Author(s):  
Miguel Bascur ◽  
Fabián Guzmán ◽  
Sergio Mora ◽  
Pepe Espinoza ◽  
Ángel Urzúa

Pleuroncodes monodon, an important fishery resource and key species in the Humboldt Current Large Marine ecosystem, has a prolonged reproductive period from winter until end of summer, and during this time females incubating their embryos are exposed to seasonal variation in food availability and in temperature. Additionally, in order to ensure successful reproduction and survival of embryos, changes occur in the main internal reserves and/or sources of energy of P. monodon. The aim of this study was to determine the extent of seasonal variation (winter vs summer) in the lipid content and fatty acid composition of ovigerous females and their embryos. The results show that a higher percentage of saturated and polyunsaturated fatty acids are found in females in winter. Similarly, the composition of fatty acids in embryos found here indicates that winter embryos have more saturated fatty acids and essential fatty acids (C18:2n6cis, C18:3n6 and C22:6n3) than do summer embryos. According to PCA analysis of fatty acid profile, samples from summer may be distinguished into two isolated groups with conspicuous variations in fatty acids profile of embryo and hepatopancreas. While in winter, the opposite pattern occurs in the fatty acid profile of embryo and hepatopancreas. These variations may be related to relevant physiological processes (reproduction and growth) and of their ontogeny (development and survival of offspring). Seasonal variation in the lipid content and composition of fatty acids of P. monodon could directly impact this species’ reproduction and survival and subsequently could have consequences on the food web and fishery exploitation.

Parasitology ◽  
1998 ◽  
Vol 116 (2) ◽  
pp. 183-190 ◽  
Author(s):  
R. A. HOLZ ◽  
D. J. WRIGHT ◽  
R. N. PERRY

The total lipid content of the dry weight of whole cysts and 2nd-stage juveniles (J2) of Globodera rostochiensis was 17·1% in dry cysts, 20·9% in cysts soaked in distilled water (DW), 20·3% in cysts that had been in potato root diffusate (PRD) for 7 days, 7·3% in cysts that had been in PRD for 28 days and 29·2% for hatched J2. The fatty acid composition of the total lipid did not differ between dry cysts, cysts in DW and cysts in PRD for 7 days. However, major differences in the fatty acid composition of all lipid classes were found between rehydrated cysts in PRD and freshly hatched J2. After hatching, the degree of saturation and the percentage of monounsaturated fatty acids decreased and the percentage of polyunsaturated fatty acids increased considerably, especially in the free fatty acid fraction, where C20[ratio ]1 showed an 8-fold decrease and C20[ratio ]4 a 33-fold increase. There was a difference in the fatty acid composition of cysts in PRD for 7 days and cysts in PRD for 28 days (after most of the J2 had hatched); with increased time in PRD the percentage of polyunsaturated fatty acids increased and the percentage of monounsaturated fatty acids decreased in all lipid classes. Differences in the fatty acid profiles between cysts in PRD for 28 days and hatched J2 were found mainly in the free fatty acid and the non-acidic phospholipid fractions. The free fatty acid fraction of the cysts was dominated by monounsaturated fatty acids (52%), whereas the same fraction of hatched J2 contained large amounts of polyunsaturated fatty acids (60%). These polyunsaturated fatty acids, especially C20[ratio ]4, might play an important part in nematode–plant interactions during infection.


1990 ◽  
Vol 122 (6) ◽  
pp. 1101-1109 ◽  
Author(s):  
J. Marshall Clark ◽  
J.R. Marion ◽  
L.J. Scarano ◽  
T.L. Potter ◽  
P.F. Gosselin ◽  
...  

AbstractQualitative and quantitative changes in the neutral lipid content of hemolymph of gypsy moths, Lymantria dispar L., were assayed in larval, pupal, and adult stages. The major neutral lipid constituents of the hemolymph were 1,2-diacylglycerols and ranged in nominal concentration from 1.6–3.4 (larval), 3.1–4.9(pupal),toamaximumof 19.3 μg lipid per microlitre hemolymph in the adult male. When detected, triacylglycerols and monoacylglycerols never exceed diacylglycerol concentrations. The fatty acid composition of 1,2-diacylglycerols from adult male moths (0–12 h after emergence) was determined as fatty acid methyl esters using gas chromatography/mass spectrometry analysis. Nine fatty acid structures have been assigned. Of these, five are saturated, unbranched, aliphatic fatty acids (C14:0 – C18:0) which comprise 80.5% of the total fatty acid abundance. The remaining four fatty acids consist of two saturated, methyl-branched, aliphatic compounds, a mono-unsaturated aliphatic acid, and a tri-unsaturated, tricyclic, diterpenoid acid.


Author(s):  
Dini Ermavitalini ◽  
Niki Yuliansari ◽  
Endry Nugroho Prasetyo ◽  
Triono Bagus Saputro

<p><em>Botryococcus</em> sp. is one of microalgae species that has a high lipid content as much as 75% of their dry weight. But, lipid production by microalgae is regulated by their environmental condition (pH, light, temperature, nutrition, etc). Mutagenesis induced by Gamma <sup>60</sup>Co irradiation can be utilized to alter the <em>Botryococcus</em> sp. genetic to get microalgae mutant strain that can produce a higher lipid content than the wild strain. <em>Botryococcus</em> sp. was irradiated with different doses of gamma ray of <sup>60</sup>Co  (0, 2, 4, 6, and 10 Gy),  and the effect  on the growth, lipid content, and fatty acid composition of microalgae were observed. Research design used is random complete (RAL) with 95 %  confident level for quantitive analysis based on the biomass and lipid contents. More over fatty acid composition was analyzed by Gas Cromatography-Mass Spectrometry<em> </em>(GC-MS). Results showed that Gamma irradiated gave an effect on growth and lipid content of <em>Botryococcus</em> sp. But between the control treatment (0 Gy) with microalgae irradiated dose of 2 Gy, 4 Gy and 6 Gy were not significantly different. Whereas between the control with 10 Gy irradiated was significantly different. The highest biomassa and lipid content are found in 10 Gy irradiated microalgae with 0.833 gram biomass and 41% lipid content. Fatty acid profile of <em>Botryococcus</em> sp. control has 6 fatty acids while 10 Gy irradiated microalgae has 12 fatty acids, with the long-chain fatty acids increased, whereas short-chain fatty acids decreased.</p>


Author(s):  
Danuta Kurasiak-Popowska ◽  
Małgorzata Graczyk ◽  
Anna Przybylska-Balcerek ◽  
Kinga Stuper-Szablewska

Abstract The aim of this study was to determine the influence of weather conditions over the course of 4 years (2016–2019) on the fatty acid profile of Camelina sativa. It was assumed that varieties and functional forms of plants (spring and winter genotypes) were characterized by a different fatty acid composition and that weather conditions affected the profile of fatty acids in camelina seeds. Statistical analyses were performed based on the results of chemical tests. Differences were found in the mean concentrations of C18:3n3, C18:3n6, C20:2 and C22:1 acids in all genotypes based on the Kruskal test. Two winter genotypes (Maczuga and 15/2/3) and the spring genotype UP2017/02 had the significantly highest content of C18:3n6. Genotypes CSS-CAM31, CSS-CAM30, BRSCHW 28347, CSS-CAM36 and Kirgzkij showed the highest content of C18:3n3. The lowest C18:3n3 content was found in winter genotypes: K9/1, 15/2/3, Przybrodzka (winter form) and C5. It was found that weather conditions deviating from the long-term average, both in terms of temperature and precipitation, did not affect the quantitative profile of fatty acids. Over the 4 years, no differences were observed in the fatty acid profile between the spring and winter forms. Observations made in this study allow to state that spring and winter forms of Camelina sativa retain a constant fatty acid composition regardless of changing weather conditions.


2009 ◽  
Vol 103 (4) ◽  
pp. 522-529 ◽  
Author(s):  
Sarah K. Abbott ◽  
Paul L. Else ◽  
A. J. Hulbert

The present study quantifies the relationships between diet fatty acid profile and fatty acid composition of rat skeletal muscle phospholipids. Young adult male Sprague–Dawley rats were fed, for 8 weeks, on one of twelve moderate-fat diets (25 % of total energy) differing only in fatty acid profile. SFA content ranged from 8–88 % of total fatty acids, MUFA 6–65 %, total PUFA 4–81 %, n-6 PUFA 3–70 % and n-3 PUFA 1–70 %. Diet PUFA included only essential fatty acids 18 : 2n-6 and 18 : 3n-3. The balance between n-3 and n-6 PUFA (PUFA balance) in the diet ranged from 1 : 99 to 86 : 14 % n-3 PUFA:n-6 PUFA. The slope of muscle phospholipid composition plotted against diet composition quantifies the response of muscle membrane composition to dietary fat (0, no response; 1, complete conformity with diet). The resulting slopes were 0·02 (SFA), 0·10 (PUFA), 0·11 (MUFA), 0·14 (n-3 PUFA) and 0·23 (n-6 PUFA). The response to PUFA balance was biphasic with a slope of 0·98 below 10 % diet PUFA balance and 0·16 above 10 %. Thus, low diet PUFA balance has greater influence on muscle composition than 18-carbon n-3 or n-6 PUFA individually. Equations provided may allow prediction of muscle composition for other diet studies. Diet PUFA balance dramatically affects muscle 20 : 4n-6 and 22 : 6n-3. This may have significant implications for some disease states in human subjects.


Author(s):  
A.K.S. Knudsen ◽  
E.E. Jespersen ◽  
M.J. Markwardt ◽  
A. Johansen ◽  
A.P. Ortind ◽  
...  

The main purpose of this study is to characterise how substrate lipid content affects growth kinetics of black soldier fly (BSF) larvae. Growth curves of larvae were characterised in substrates composed of chicken feed supplemented by 0-30% fish oil, and lipid content and fatty acid composition of the prepupae were quantified to examine up-take and assimilation of fish oil by the larvae. Increasing contents of fish oil resulted in reduced specific growth rates, reduced weight of the prepupae, and increased mortality. The prepupae had similar lipid contents at 0-20% fish oil, while 30% fish oil increased the lipid content of prepupae. In contrast, the fatty acid composition of the prepupae showed a strong dependency on substrate fish oil content, indicating that the larvae increased their uptake of fish oil with increasing fish oil content. C16-C22 fatty acids were bioaccumulated from the fish oil, but particularly C20 and C22 fatty acids were apparently also shortened or further metabolised. Microbial fermentation products rapidly accumulated in the substrates, and substrate lipids and carbohydrates were preserved and remained available for the larvae throughout their growth period. These results point out that although BSF larvae can utilise high contents of substrate lipids, it may be at the expense of reduced growth performance, and with limited effects on the composition of their biomass.


2021 ◽  
Vol 38 (2) ◽  
pp. 211-218
Author(s):  
Nurgül Şen Özdemir ◽  
Ali Muzaffer Feyzioğlu ◽  
Fatma Caf

Seasonal changes of the lipid and fatty acid composition of Pleurobrachia pileus investigated monthly from March 2012 to February 2013. Average total lipid content was determined as percentage (%) and per individual (mg ind-1). It was highest in February (1.48 %; 3.55 mg ind-1). However, it was proportionally the lowest in April (0.40 %), and per individual in August (0.33 mg ind-1). Major fatty acids of P. pileus were identified as 16:0, 14:0, 11:1 n-9c, 20:5 n-3, and 22:6 n-3. P. pileus had on average 27.27 % ∑SFA, 25.04 % ∑MUFA and 47.63 % ∑PUFA content. EPA and DHA were the major fatty acids from PUFA. Seasonal changes of DHA were more obvious than EPA (p<0.05). Herbivore calanoid zooplankton trophic markers; 20:1 n-9 and DHA/EPA and herbivory trophic markers; EPA and DHA content were high in P. pileus fatty acids. It showed that herbivory fatty acids were taken by feeding from herbivory zooplankton and phytoplankton. Diet was an important factor in seasonal fatty acid changes of P. pileus. In addition, we revealed that P. pileus has a rich lipid content and fatty acid composition and plays an important role in the Southeastern Black Sea ecosystem functionalities between herbivory and carnivory species.


2002 ◽  
Vol 2002 ◽  
pp. 49-49
Author(s):  
H.E. Warren ◽  
J.K.S. Tweed ◽  
S.J. Youell ◽  
R. J. Dewhurst ◽  
J.D. Wood ◽  
...  

Forages, such as grass and red clover, are a rich source of n -3 polyunsaturated fatty acids, especially α-linolenic acid (C18:3n -3), and may be used as a method of improving the nutritional value of ruminant products. Silage is an important feed for cattle, therefore, a study was carried out to elucidate the effects of wilting and the use of additives on the fatty acid profile of the resultant silage.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 854
Author(s):  
Ramesh Kumar Saini ◽  
Awraris Derbie Assefa ◽  
Young-Soo Keum

Spices and herbs are well-known for being rich in healthy bioactive metabolites. In recent years, interest in the fatty acid composition of different foods has greatly increased. Thus, the present study was designed to characterize the fatty acid composition of 34 widely used spices and herbs. Utilizing gas chromatography (GC) flame ionization detection (FID) and GC mass spectrometry (MS), we identified and quantified 18 fatty acids. This showed a significant variation among the studied spices and herbs. In general, oleic and linoleic acid dominate in seed spices, whereas palmitic, stearic, oleic, linoleic, and α-linolenic acids are the major constituents of herbs. Among the studied spices and herbs, the ratio of n−6/n−3 polyunsaturated fatty acids (PUFAs) was recorded to be in the range of 0.36 (oregano) to 85.99 (cumin), whereas the ratio of PUFAs/saturated fatty acids (SFAs) ranged from 0.17 (nutmeg) to 4.90 (cumin). Cumin, coriander, fennel, and dill seeds represent the healthiest fatty acid profile, based upon fat quality indices such as the ratio of hypocholesterolemic/hypercholesterolemic (h/H) fatty acids, the atherogenic index (AI), and the thrombogenic index (TI). All these seed spices belong to the Apiaceae family of plants, which are an exceptionally rich source of monounsaturated fatty acids (MUFAs) in the form of petroselinic acid (C18:1n12), with a very small amount of SFAs.


Sign in / Sign up

Export Citation Format

Share Document