Fine structure of the anterior adhesive apparatus (head organs) of Bravohollisia gussevi Lim, 1995 (Monogenea: Ancyrocephalidae)

Parasitology ◽  
2005 ◽  
Vol 132 (3) ◽  
pp. 427-438 ◽  
Author(s):  
W. L. WONG ◽  
G. P. BRENNAN ◽  
D. W. HALTON ◽  
L. H. S. LIM

A study of the anterior adhesive apparatus (head organs) of Bravohollisia gussevi Lim, 1995 was carried out using light and electron microscopy. The anterior adhesive apparatus or head organs in B. gussevi comprise 6 circular openings or apertures in the antero-lateral region, associated pits lined with specialized microvillous tegument that differ from the general body tegument, a bundle of ducts, and uninucleate gland cells located lateral to the pharynx. The uninucleate glands of the anterior adhesive apparatus (head organs) comprise 2 types of cells, one kind of cell producing rod-like bodies (S1) and the other oval bodies (S2). The S1 bodies are filled with numerous, less electron-dense vesicles in an electron-dense matrix, while S2 bodies have no vesicles but contain a more homogeneous electron-dense matrix. Interlinking band-like structures were observed between S1 bodies. Similar band-like structures were found between S2 bodies. The formation of S1 bodies was followed by transmission electron microscopy. However, the formation of S2 bodies was unclear and could not be resolved. Uniciliated structures were also observed around the openings of the anterior adhesive apparatus. Each uniciliated structure is usually associated with an opening of a gland cell producing granular, electron-dense, secretory bodies, which differ from the secretions produced by the lateral gland cells of the anterior adhesive apparatus.

1994 ◽  
Vol 72 (4) ◽  
pp. 707-711
Author(s):  
S. Martínez-Alós ◽  
P. García-Corrales ◽  
B. Cifrian

The frontal glands of Bothromesostoma personatum were examined using transmission electron microscopy. These glands have two types of rhabdoid gland cells; one type produces rhabdites and the other a different type of rod secretion (rhabdoids). The ultrastructure of the latter type is described, together with their origin. Long necks containing the rhabdoids emerge from the rhabdoid gland cell bodies and extend to the anterior end of the animal, where they release the rhabdoids. The rhabdoids are compared with the rhammites of other rhabditophoran species on the basis of their dye affinities, formation mechanism, and ultrastructure.


Tick borne pathogens present a significant health challenge to animals and human because a single tick may transmit multiple pathogens to a mammalian host during feeding. The present study detected tick-borne pathogens from pet dogs. A total of 666 ticks were collected from 144 pet and sheltered dogs in Egypt from April to September 2018. For hemolymph, midgut and salivary gland smears 546 ticks were used as well as 360 egg smears from 120 female tick were examined by light microscope. The infected ticks were prepared for transmission electron microscopy (TEM). Ticks were identified; Rhipicephalus sanguineus. Light microscopy showed infection rates of 44.69%, 68.50% & 15.75%, in hemolymph, midgut and salivary gland, respectively. H. canis recorded the highest rates in hemolymph and midgut (35.89% & 49.82%, respectively), but Theileria spp. was the lowest (0.73% & 2.93%, respectively). In salivary gland smears, Babesia canis. was detected in 13.55% and Theileria spp. in 1.83%. Mixed infection in same tick was recorded in 4.76% &0.37% in midgut and salivary gland smears, respectively. Babesia canis stages were recovered from 15% of egg smears. R. sanguineus was natural infected by Babesia, Theileria, Hepatozoon and Anaplasma phagocytophilum as well as mixed infections of protozoa accompanied by a complicated sign of diseases and failure in accurate diagnosis.


2016 ◽  
Vol 106 (2) ◽  
pp. 142-154 ◽  
Author(s):  
J. M. Cicero ◽  
T. W. Fisher ◽  
J. K. Brown

The potato psyllid Bactericera cockerelli is implicated as the vector of the causal agent of zebra chip of potato and vein-greening of tomato diseases. Until now, visual identification of bacteria in the genus ‘Candidatus Liberibacter’ has relied on direct imaging by light and electron microscopy without labeling, or with whole-organ fluorescence labeling only. In this study, aldehyde fixative followed by a coagulant fixative, was used to process adult psyllids for transmission electron microscopy (TEM) colloidal gold in situ hybridization experiments. Results indicated that ‘Ca. Liberibacter solanacearum’ (CLso)-specific DNA probes annealed to a bacterium that formed extensive, monocultural biofilms on gut, salivary gland, and oral region tissues, confirming that it is one morphotype of potentially others, that is rod-shaped, approximately 2.5 µm in diameter and of variable length, and has a rough, granular cytosol. In addition, CLso, prepared from shredded midguts, and negatively stained for TEM, possessed pili- and flagella-like surface appendages. Genes implicating coding capacity for both types of surface structures are encoded in the CLso genome sequence. Neither type was seen for CLso associated with biofilms within or on digestive organs, suggesting that their production is stimulated only in certain environments, putatively, in the gut during adhesion leading to multiplication, and in hemolymph to afford systemic invasion.


2016 ◽  
Vol 36 (suppl 1) ◽  
pp. 89-94 ◽  
Author(s):  
Luciana S. Simões ◽  
Rose E.G. Rici ◽  
Phelipe O. Favaron ◽  
Taís Harumi de Castro Sasahara ◽  
Rodrigo S.N. Barreto ◽  
...  

Abstract: al for both, the establishment of appropriate management systems, and for the use of new species as animal models. In this study, we used light and electron microscopy to characterize the sexual development stages of the guinea pig (Cavia porcellus) in specimens of 30, 45 and 90 days of age. We observed the differentiation of spermatocytes only through transmission electron microscopy in the leptotene, zygotene and pachytene phases of meiosis, in 30-day-old animals. During puberty, there was differentiation of the germinative epithelium and formation of the acrosome. Spermatozoa, however, were not detected. Thus, we could infer that puberty happens after 45 days of age. Sexual maturity was evident in 90-day-old specimens. Our results showed that changes in the testicular germinative epithelium during the postnatal sexual development in guinea pig led to morphological changes, including the ones related to the development of Leydig and Sertoli cells, which are directly related to puberty. In this work, we provide new morphological subsidies for a better understanding of reproductive parameters of this species, enabling its use as an animal model in the field of the reproductive biology.


1996 ◽  
Vol 70 (1) ◽  
pp. 13-19 ◽  
Author(s):  
J.R. Ferrer ◽  
M. Gracenea ◽  
M. Trullols ◽  
O. Gonzalez-Moreno

AbstractThe tegument of Postorchigenes gymnesicus has been studied by scanning and transmission electron microscopy. The general body tegument is spinous and contains mitochondria, biconcave disc-shaped vesicles bounded by an unitary membrane and displaying a protein content, and scarce spherical bodies. The tegument covering specialized body regions is aspinous. Few vesicles were evident in the tegument covering the suckers and oesophagus, being more abundant in the metraterm and cirrus where the tegument is thicker. Laurer's canal has a thick tegument with sparse vesicles, mostly arranged close to the apical membrane. A direct association was evident between the basal lamina underlying the spines and the muscular subtegumental fibres, suggesting a motile character for the spine.


1996 ◽  
Vol 44 (11) ◽  
pp. 1279-1288 ◽  
Author(s):  
C Antonio ◽  
J M González-García ◽  
J Page ◽  
J A Suja ◽  
J C Stockert ◽  
...  

We analyzed first-metaphase meiotic chromosomes of the grasshopper Chorthippus jucundus by two different methods, i.e., a silver impregnation technique and the osmium tetroxide-p-phenylenediamine (Os-PPD) procedure. The former was applied on squashed testes previously fixed in ethanol-acetic acid, whereas for Os-PPD the material was not subjected to any previous extraction treatment but was fixed in OsO4, treated with PPD, and embedded in Epon 812. Both techniques revealed chromatid cores and kinetochores regardless of the processing of the material (squashed or sectioned). Unstained Os-PPD sections were analyzed by light microscopy and transmission electron microscopy (TEM). The Os-PPD technique provided a high contrast of chromatid cores and kinetochores in relation to the chromatin, which revealed a low electron density. To determine the Os-PPD reaction mechanism, the PAS procedure, as well as scanning electron microscopy (SEM) backscattering and SEM X-ray microanalysis, was performed on sections. By use of the Os-PPD-PAS procedure, glycol groups formed by oxidation of osmium bound to aromatic substrates were detected in chromatid cores and kinetochores by brightfield and fluorescence microscopy. A high Z contrast was detected in these structures by backscattered electron imaging. SEM X-ray microanalysis showed osmium and phosphorus to be the main elements present on the chromatid cores. Taking into account the known reactivity of OsO4 and the present results, the possible participation of nucleic acids as well as proteins in the Os-PPD reaction mechanism and in the composition of chromatid cores and kinetochores is discussed.


1976 ◽  
Vol 54 (9) ◽  
pp. 831-851 ◽  
Author(s):  
John P. Jones

The techniques of electron microscopy have been used to elucidate the details of conidium ontogeny in Phoma pomorum, Microsphaeropsis olivaceum, and Coniothyrium fuckelii. All three of these organisms were shown to be phialidic. The pyenidia of these organisms contained an electron-dense matrix, which in nature, probably functions as an aid to spore dispersal. In Phoma pomorum it was possible to trace conidia to their originating conidiophore through this matrix.


1992 ◽  
Vol 70 (10) ◽  
pp. 1964-1983 ◽  
Author(s):  
Brian A. Fineran ◽  
Judith M. Fineran

Spore wall organization in the five species of Entorrhiza (Ustilaginales) has been investigated using thin sections for transmission electron microscopy, supported by light and scanning electron microscopy and some freeze-etching. Material was examined from herbaria, specimens preserved in fixative, and fresh host tissue. The wall has four main layers, numbered 1–4 from the outside to inside of the wall; some layers are further differentiated into zones. Layer 1 in E. aschersoniana, E. caspaiyana, and E. caricicola has two zones: a broad outer zone 2 of dense matrix and a narrow inner zone 1 of less compacted material. Zone 1 is absent in E. cypericola. In E. scirpicola, layer 1 is represented by discontinuous longitudinal ridges. In all spores, layer 2 is composed of a homogeneous electron-dense matrix. Layer 1 in E. aschersoniana, E. casparyana, and E. caricicola is uniformly thick, but in E. cypericola it is broad with an irregular outer margin. In E. scirpicola, layer 2 is differentiated into a distinctive pattern of longitudinal ribs. In all spores of Entorrhiza, layer 3 is resolvable into fine lamellae, corresponding to the mosaic of striations seen after freeze-etching. Layer 3 in Entorrhiza is equivalent to the partition layer described in other Tilletiaceae. Layer 4 has the same organization in all the species, consisting of a very narrow zone 2 abutting layer 3 and a broad zone 1 that forms the rest of the layer. Based on wall structure, E. aschersoniana and E. casparyana represent the most closely related species, followed by E. caricicola, with E. cypericola more distant again. Entorrhiza scirpicola is considered the least related of the species; only its layers 3 and 4 resemble the other species. Key words: Entorrhiza, Tilletiaceae, spore wall ultrastructure, species relationships.


Sign in / Sign up

Export Citation Format

Share Document