scholarly journals NH3 Observations of the Sgr A Complex Region with the Nobeyama Millimeter Array

1989 ◽  
Vol 136 ◽  
pp. 371-377 ◽  
Author(s):  
S. K. Okumura ◽  
M. Ishiguro ◽  
E. B. Fomalont ◽  
Y. Chikada ◽  
T. Kasuga ◽  
...  

We report NH3 observations of the Sgr A complex region including Sgr A West and the 20 km/s and 50 km/s molecular clouds (M–0.13–0.08 and M–0.02–0.07) using the Nobeyama Millimeter Array and the 45m telescope. NH3(1,1) and (2,2) lines were simultaneously observed to estimate the kinetic temperature. Our results suggest strong interaction between the molecular clouds and the continuum sources in the Sgr A complex. The interaction with continuum sources might be an important factor in determining the physical conditions of molecular gas in the galactic center region.

1980 ◽  
Vol 87 ◽  
pp. 111-112
Author(s):  
Junji Inatani ◽  
Nobuharu Ukita

The two-dimensional distribution of molecular clouds in the galactic center region has been investigated in the CO 115 GHz line and in the OH 1665 and 1667 MHz lines. As the former is an emission line, we can find molecular clouds without the unavoidable bias to continuum sources which is inherent in a survey of OH absorption lines. Because the CO line is usually optically thick, the brightness temperature of the line is directly related to the kinetic temperature of the cloud. On the other hand, the real optical depth of the OH line can be obtained from the intensity ratio between 1665 and 1667 MHz lines (assuming LTE). From this point of view we have compared the CO and OH observational results.


1989 ◽  
Vol 136 ◽  
pp. 129-133 ◽  
Author(s):  
A. A. Stark ◽  
J. Bally ◽  
R. W. Wilson ◽  
M. W. Pound

A decade of galactic center observations at the Crawford Hill 7 m antenna is summarized. The galactic center region contains several hundred high-mass, high-density molecular clouds with physical properties very different from clouds in the outer galactic disk. There is also a considerable amount of molecular gas not bound into clouds, but sheared by differential rotation into a molecular inter-cloud medium not seen elsewhere in the Galaxy. These observations can be explained by a combination of the tidal density limit and the virial theorem. The distribution of emission on the sky and in velocity suggests that most of the dense gas is confined to a 500 pc long ridge of emission which may be a dust lane along the central bar.


1989 ◽  
Vol 136 ◽  
pp. 421-422
Author(s):  
Aa. Sandqvist ◽  
R. Karlsson ◽  
J. B. Whiteoak

The 18-cm distribution of OH in the Galactic Center region near Sgr A has been mapped in all four of the 1612, 1665, 1667 and 1720 MHz OH absorption lines using the VLA with 4 arcsec angular resolution and 9 kms-1 velocity resolution. The OH gas at +50 and +20 kms-l is seen clearly in absorption against the shell structure of Sgr A East but not against the spiral structure of Sgr A West, possibly implying that this molecular gas lies between the two continuum components - behind Sgr A West and in front of Sgr A East. Inside the Circumnuclear Disk, there is a new neutral streamer which sweeps from the disk in towards Sgr A∗ as the observed radial velocity decreases from +78 to +16 kms-1. The streamer may have a negative-velocity counterpart on the opposite side of Sgr A∗.


1998 ◽  
Vol 179 ◽  
pp. 189-190
Author(s):  
T. Oka ◽  
T. Hasegawa ◽  
F. Sato ◽  
H. Yamasaki ◽  
M. Tsuboi ◽  
...  

Molecular gas in the Galactic center region is spatially and kinematically complex, and its physical conditions are distinctively different from those of molecular gas in the Galactic disk (e.g., Morris 1996). Relative paucity of current star formation activity, despite the abundance of dense molecular gas in this region, is one of the problem at issue.


2013 ◽  
Vol 9 (S303) ◽  
pp. 156-158
Author(s):  
Y. M. Pihlström ◽  
B. C. McEwen ◽  
L. O. Sjouwerman

AbstractMethanol masers can be used to constrain densities and estimate kinematical distances to supernova remnants (SNRs), important parameters in cosmic ray acceleration models. With the goal of testing those models both for SNRs inside and outside the Galactic center (GC) region, we have used the Very Large Array to search for 36 GHz and 44 GHz methanol lines in Galactic SNRs. We report on the overall results of the maser search, and in particular the results of the GC SNR G1.4–0.1 in which more than 40 masers were found. They may be due to interactions between the SNR and at least two separate molecular clouds. Methanol masers were also detected in W28 and in Sgr A East.


2011 ◽  
Vol 740 (2) ◽  
pp. 103 ◽  
Author(s):  
Hirokazu Odaka ◽  
Felix Aharonian ◽  
Shin Watanabe ◽  
Yasuyuki Tanaka ◽  
Dmitry Khangulyan ◽  
...  

1989 ◽  
Vol 136 ◽  
pp. 157-158 ◽  
Author(s):  
J. G. Stacy ◽  
M. E. Bitran ◽  
T. M. Dame ◽  
P. Thaddeus

The discrepancy between observed and predicted γ-ray emission toward the Galactic Center is attributed to a unique population of wide-line molecular clouds. The most prominent objects of this class show evidence of rotation and a significant stellar population. The observed 12CO emission traces the gravitational field produced primarily by stars, not molecular gas.


2013 ◽  
Vol 9 (S303) ◽  
pp. 106-108
Author(s):  
Kazufumi Torii ◽  
Rei Enokiya ◽  
Yasuo Fukui ◽  
Hiroaki Yamamoto ◽  
Akiko Kawamura ◽  
...  

AbstractWe present the first results of the new CO J = (2 − 1) observations toward the central molecular zone (CMZ) using the NANTEN2 telescope at an angular resolution of 100″. Large area coverage of 4° × 2° in l and b and a high angular resolution of 100″ enable us to investigate detailed structures of the molecular gas in the CMZ including peculiar molecular filaments perpendicularly to the Galactic plane to b > |0.5°|. The major components of the CMZ, e.g., Sgr A, Sgr B and Sgr C cloud complexes, show high CO J = (2 − 1)/J = (1 − 0) ratios around 0.9, indicating highly excited conditions of the molecular gas, while the local foreground components show less than 0.4. The molecular filaments show the typical ratios of 0.6–0.7 indicate that they are indeed located in the Galactic center.


Sign in / Sign up

Export Citation Format

Share Document