Memoir 4: An Analysis of the History of Marine Animal Diversity

Paleobiology ◽  
2007 ◽  
Vol 33 (S4) ◽  
pp. 1-55 ◽  
Author(s):  
Steven M. Stanley

According to when they attained high diversity, major taxa of marine animals have been clustered into three groups, the Cambrian, Paleozoic, and Modern Faunas. Because the Cambrian Fauna was a relatively minor component of the total fauna after mid-Ordovician time, the Phanerozoic history of marine animal diversity is largely a matter of the fates of the Paleozoic and Modern Faunas. The fact that most late Cenozoic genera belong to taxa that have been radiating for tens of millions of years indicates that the post-Paleozoic increase in diversity indicated by fossil data is real, rather than an artifact of improvement of the fossil record toward the present.Assuming that ecological crowding produced the so-called Paleozoic plateau for family diversity, various workers have used the logistic equation of ecology to model marine animal diversification as damped exponential increase. Several lines of evidence indicate that this procedure is inappropriate. A plot of the diversity of marine animal genera through time provides better resolution than the plot for families and has a more jagged appearance. Generic diversity generally increased rapidly during the Paleozoic, except when set back by pulses of mass extinction. In fact, an analysis of the history of the Paleozoic Fauna during the Paleozoic Era reveals no general correlation between rate of increase for this fauna and total marine animal diversity. Furthermore, realistically scaled logistic simulations do not mimic the empirical pattern. In addition, it is difficult to imagine how some fixed limit for diversity could have persisted throughout the Paleozoic Era, when the ecological structure of the marine ecosystem was constantly changing. More fundamentally, the basic idea that competition can set a limit for marine animal diversity is incompatible with basic tenets of marine ecology: predation, disturbance, and vagaries of recruitment determine local population sizes for most marine species. Sparseness of predators probably played a larger role than weak competition in elevating rates of diversification during the initial (Ordovician) radiation of marine animals and during recoveries from mass extinctions. A plot of diversification against total diversity for these intervals yields a band of points above the one representing background intervals, and yet this band also displays no significant trend (if the two earliest intervals of the initial Ordovician are excluded as times of exceptional evolutionary innovation). Thus, a distinctive structure characterized the marine ecosystem during intervals of evolutionary radiation—one in which rates of diversification were exceptionally high and yet increases in diversity did not depress rates of diversification.Particular marine taxa exhibit background rates of origination and extinction that rank similarly when compared with those of other taxa. Rates are correlated in this way because certain heritable traits influence probability of speciation and probability of extinction in similar ways. Background rates of origination and extinction were depressed during the late Paleozoic ice age for all major marine invertebrate taxa, but remained correlated. Also, taxa with relatively high background rates of extinction experienced exceptionally heavy losses during biotic crises because background rates of extinction were intensified in a multiplicative manner; decimation of a large group of taxa of this kind in the two Permian mass extinctions established their collective identity as the Paleozoic Fauna.Characteristic rates of origination and extinction for major taxa persisted from Paleozoic into post-Paleozoic time. Because of the causal linkage between rates of origination and extinction, pulses of extinction tended to drag down overall rates of origination as well as overall rates of extinction by preferentially eliminating higher taxa having relatively high background rates of extinction. This extinction/origination ratchet depressed turnover rates for the residual Paleozoic Fauna during the Mesozoic Era. A decline of this fauna's extinction rate to approximately that of the Modern Fauna accounts for the nearly equal fractional losses experienced by the two faunas in the terminal Cretaceous mass extinction.Viewed arithmetically, the fossil record indicates slow diversification for the Modern Fauna during Paleozoic time, followed by much more rapid expansion during Mesozoic and Cenozoic time. When viewed more appropriately as depicting geometric—or exponential—increase, however, the empirical pattern exhibits no fundamental secular change: the background rate of increase for the Modern Fauna—the fauna that dominated post-Paleozoic marine diversity—simply persisted, reflecting the intrinsic origination and extinction rates of constituent taxa. Persistence of this overall background rate supports other evidence that the empirical record of diversification for marine animal life since Paleozoic time represents actual exponential increase. This enduring rate makes it unnecessary to invoke environmental change to explain the post-Paleozoic increase of marine diversity.Because of the resilience of intrinsic rates, an empirically based simulation that entails intervals of exponential increase for the Paleozoic and Modern Faunas, punctuated by mass extinctions, yields a pattern that is remarkably similar to the empirical pattern. It follows that marine animal genera and species will continue to diversify exponentially long into the future, barring disruption of the marine ecosystem by human-induced or natural environmental changes.

2020 ◽  
Vol 375 (1814) ◽  
pp. 20190445 ◽  
Author(s):  
Thomas J. Webb ◽  
Bart Vanhoorne

Recent decades have seen an explosion in the amount of data available on all aspects of biodiversity, which has led to data-driven approaches to understand how and why diversity varies in time and space. Global repositories facilitate access to various classes of species-level data including biogeography, genetics and conservation status, which are in turn required to study different dimensions of diversity. Ensuring that these different data sources are interoperable is a challenge as we aim to create synthetic data products to monitor the state of the world's biodiversity. One way to approach this is to link data of different classes, and to inventory the availability of data across multiple sources. Here, we use a comprehensive list of more than 200 000 marine animal species, and quantify the availability of data on geographical occurrences, genetic sequences, conservation assessments and DNA barcodes across all phyla and broad functional groups. This reveals a very uneven picture: 44% of species are represented by no record other than their taxonomy, but some species are rich in data. Although these data-rich species are concentrated into a few taxonomic and functional groups, especially vertebrates, data are spread widely across marine animals, with members of all 32 phyla represented in at least one database. By highlighting gaps in current knowledge, our census of marine diversity data helps to prioritize future data collection activities, as well as emphasizing the importance of ongoing sustained observations and archiving of existing data into global repositories. This article is part of the theme issue ‘Integrative research perspectives on marine conservation’.


Paleobiology ◽  
2007 ◽  
Vol 33 (sp6) ◽  
pp. 1-55 ◽  
Author(s):  
Steven M. Stanley

1990 ◽  
Vol 5 ◽  
pp. 262-272
Author(s):  
William Miller

Paleontologists have lavished much time and energy on description and explanation of large-scale patterns in the fossil record (e.g., mass extinctions, histories of monophyletic taxa, deployment of major biogeographic units), while paying comparatively little attention to biologic patterns preserved only in local stratigraphic sequences. Interpretation of the large-scale patterns will always be seen as the chief justification for the science of paleontology, but solving problems framed by long time spans and large areas is rife with tenuous inference and patterns are prone to varied interpretation by different investigators using virtually the same data sets (as in the controversy over ultimate cause of the terminal Cretaceous extinctions). In other words, the large-scale patterns in the history of life are the true philosophical property of paleontology, but there will always be serious problems in attempting to resolve processes that transpired over millions to hundreds-of-millions of years and encompassed vast areas of seafloor or landscape. By contrast, less spectacular and more commonplace changes in local habitats (often related to larger-scale events and cycles) and attendant biologic responses are closer to our direct experience of the living world and should be easier to interpret unequivocally. These small-scale responses are reflected in the fossil record at the scale of local outcrops.


Science ◽  
2020 ◽  
Vol 368 (6489) ◽  
pp. 420-424 ◽  
Author(s):  
R. A. Close ◽  
R. B. J. Benson ◽  
E. E. Saupe ◽  
M. E. Clapham ◽  
R. J. Butler

The global fossil record of marine animals has fueled long-standing debates about diversity change through time and the drivers of this change. However, the fossil record is not truly global. It varies considerably in geographic scope and in the sampling of environments among intervals of geological time. We account for this variability using a spatially explicit approach to quantify regional-scale diversity through the Phanerozoic. Among-region variation in diversity is comparable to variation through time, and much of this is explained by environmental factors, particularly the extent of reefs. By contrast, influential hypotheses of diversity change through time, including sustained long-term increases, have little explanatory power. Modeling the spatial structure of the fossil record transforms interpretations of Phanerozoic diversity patterns and their macroevolutionary explanations. This necessitates a refocus of deep-time diversification studies.


2016 ◽  
Vol 113 (9) ◽  
pp. 2360-2365 ◽  
Author(s):  
Kimberly V. Lau ◽  
Kate Maher ◽  
Demir Altiner ◽  
Brian M. Kelley ◽  
Lee R. Kump ◽  
...  

Delayed Earth system recovery following the end-Permian mass extinction is often attributed to severe ocean anoxia. However, the extent and duration of Early Triassic anoxia remains poorly constrained. Here we use paired records of uranium concentrations ([U]) and 238U/235U isotopic compositions (δ238U) of Upper Permian−Upper Triassic marine limestones from China and Turkey to quantify variations in global seafloor redox conditions. We observe abrupt decreases in [U] and δ238U across the end-Permian extinction horizon, from ∼3 ppm and −0.15‰ to ∼0.3 ppm and −0.77‰, followed by a gradual return to preextinction values over the subsequent 5 million years. These trends imply a factor of 100 increase in the extent of seafloor anoxia and suggest the presence of a shallow oxygen minimum zone (OMZ) that inhibited the recovery of benthic animal diversity and marine ecosystem function. We hypothesize that in the Early Triassic oceans—characterized by prolonged shallow anoxia that may have impinged onto continental shelves—global biogeochemical cycles and marine ecosystem structure became more sensitive to variation in the position of the OMZ. Under this hypothesis, the Middle Triassic decline in bottom water anoxia, stabilization of biogeochemical cycles, and diversification of marine animals together reflect the development of a deeper and less extensive OMZ, which regulated Earth system recovery following the end-Permian catastrophe.


Author(s):  
Floor Haalboom

This article argues for more extensive attention by environmental historians to the role of agriculture and animals in twentieth-century industrialisation and globalisation. To contribute to this aim, this article focuses on the animal feed that enabled the rise of ‘factory farming’ and its ‘shadow places’, by analysing the history of fishmeal. The article links the story of feeding fish to pigs and chickens in one country in the global north (the Netherlands), to that of fishmeal producing countries in the global south (Peru, Chile and Angola in particular) from 1954 to 1975. Analysis of new source material about fishmeal consumption from this period shows that it saw a shift to fishmeal production in the global south rather than the global north, and a boom and bust in the global supply of fishmeal in general and its use in Dutch pigs and poultry farms in particular. Moreover, in different ways, the ocean, and production and consumption places of fishmeal functioned as shadow places of this commodity. The public health, ecological and social impacts of fishmeal – which were a consequence of its cheapness as a feed ingredient – were largely invisible on the other side of the world, until changes in the marine ecosystem of the Pacific Humboldt Current and the large fishmeal crisis of 1972–1973 suddenly changed this.


Paleobiology ◽  
2009 ◽  
Vol 35 (4) ◽  
pp. 612-630 ◽  
Author(s):  
Arnold I. Miller ◽  
Devin P. Buick ◽  
Katherine V. Bulinski ◽  
Chad A. Ferguson ◽  
Austin J. W. Hendy ◽  
...  

Previous analyses of the history of Phanerozoic marine biodiversity suggested that the post-Paleozoic increase observed at the family level and below was caused, in part, by an increase in global provinciality associated with the breakup of Pangea. Efforts to characterize the Phanerozoic history of provinciality, however, have been compromised by interval-to-interval variations in the methods and standards used by researchers to calibrate the number of provinces. With the development of comprehensive, occurrence-based data repositories such as the Paleobiology Database (PaleoDB), it is now possible to analyze directly the degree of global compositional disparity as a function of geographic distance (geo-disparity) and changes thereof throughout the history of marine animal life. Here, we present a protocol for assessing the Phanerozoic history of geo-disparity, and we apply it to stratigraphic bins arrayed throughout the Phanerozoic for which data were accessed from the PaleoDB. Our analyses provide no indication of a secular Phanerozoic increase in geo-disparity. Furthermore, fundamental characteristics of geo-disparity may have changed from era to era in concert with changes to marine venues, although these patterns will require further scrutiny in future investigations.


2021 ◽  
Vol 288 (1960) ◽  
Author(s):  
Pedro M. Monarrez ◽  
Noel A. Heim ◽  
Jonathan L. Payne

Whether mass extinctions and their associated recoveries represent an intensification of background extinction and origination dynamics versus a separate macroevolutionary regime remains a central debate in evolutionary biology. The previous focus has been on extinction, but origination dynamics may be equally or more important for long-term evolutionary outcomes. The evolution of animal body size is an ideal process to test for differences in macroevolutionary regimes, as body size is easily determined, comparable across distantly related taxa and scales with organismal traits. Here, we test for shifts in selectivity between background intervals and the ‘Big Five’ mass extinction events using capture–mark–recapture models. Our body-size data cover 10 203 fossil marine animal genera spanning 10 Linnaean classes with occurrences ranging from Early Ordovician to Late Pleistocene (485–1 Ma). Most classes exhibit differences in both origination and extinction selectivity between background intervals and mass extinctions, with the direction of selectivity varying among classes and overall exhibiting stronger selectivity during origination after mass extinction than extinction during the mass extinction. Thus, not only do mass extinction events shift the marine biosphere into a new macroevolutionary regime, the dynamics of recovery from mass extinction also appear to play an underappreciated role in shaping the biosphere in their aftermath.


Sign in / Sign up

Export Citation Format

Share Document