Calculation of Fuchsian groups associated to billiards in a rational triangle

1998 ◽  
Vol 18 (4) ◽  
pp. 1019-1042 ◽  
Author(s):  
CLAYTON C. WARD

We define, following Veech, the Fuchsian group $\Gamma(P)$ of a rational polygon $P$. If $P$ is simply-connected, then ‘rational’ is equivalent to the condition that all interior angles of $P$ be rational multiples of $\pi$. Should it happen that $\Gamma(P)$ has finite covolume in $\mathop{\rm PSL}\nolimits (2, {\Bbb R})$ (and is thus a {\it lattice}), then a theorem of Veech states that every billiard path in $P$ is either finite or uniformly distributed in $P$.We consider the Fuchsian groups of various rational triangles. First, we calculate explicitly the Fuchsian groups of a new sequence of triangles, and discover they are lattices. Interestingly, the lattices found are not commensurable with those previously known. We then demonstrate a class of triangles whose Fuchsian groups are {\it not\/} lattices. These are the first examples of such triangles. Finally, we end by showing how one may specify algebraically, i.e. by an explicit polynomial in two variables, the Riemann surfaces and holomorphic one-forms that are associated to a simply-connected rational polygon. Previously, these surfaces were known by their geometric description. As an example, we show a connection between the billiard in a regular polygon and the well-known Fermat curves of the algebraic equation $x^n + y^n = 1$.

2004 ◽  
Vol 95 (2) ◽  
pp. 226 ◽  
Author(s):  
J. J. Etayo ◽  
E. Martínez

We construct a special type of fundamental regions for any Fuchsian group $F$ generated by an even number of half-turns, and for certain non-Euclidean crystallographic groups (NEC groups in short). By comparing these regions we give geometrical conditions in order to $F$ be the canonical Fuchsian subgroup of one of those NEC groups. Precisely speaking, we deal with NEC groups of algebraic genus $0$ having all periods in the signature equal to $2$. By means of these conditions we give a characterization of hyperelliptic and symmetric Riemann surfaces.


2011 ◽  
Vol 151 (1) ◽  
pp. 145-159 ◽  
Author(s):  
ALEXANDER I. BUFETOV ◽  
CAROLINE SERIES

AbstractWe use Series' Markovian coding for words in Fuchsian groups and the Bowen-Series coding of limit sets to prove an ergodic theorem for Cesàro averages of spherical averages in a Fuchsian group.


Author(s):  
Eric Schippers ◽  
Mohammad Shirazi ◽  
Wolfgang Staubach

Abstract We consider a compact Riemann surface R of arbitrary genus, with a finite number of non-overlapping quasicircles, which separate R into two subsets: a connected Riemann surface $$\Sigma $$ Σ , and the union $$\mathcal {O}$$ O of a finite collection of simply connected regions. We prove that the Schiffer integral operator mapping the Bergman space of anti-holomorphic one-forms on $$\mathcal {O}$$ O to the Bergman space of holomorphic forms on $$\Sigma $$ Σ is an isomorphism onto the exact one-forms, when restricted to the orthogonal complement of the set of forms on all of R. We then apply this to prove versions of the Plemelj–Sokhotski isomorphism and jump decomposition for such a configuration. Finally we obtain some approximation theorems for the Bergman space of one-forms and Dirichlet space of holomorphic functions on $$\Sigma $$ Σ by elements of Bergman space and Dirichlet space on fixed regions in R containing $$\Sigma $$ Σ .


1974 ◽  
Vol 76 (3) ◽  
pp. 511-513 ◽  
Author(s):  
A. F. Beardon

In this paper a Fuchsian group G shall be a discrete group of Möbius transformations each of which maps the unit disc △ in the complex plane onto itself. We shall also assume throughout this paper that G is both finitely generated and of the first kind.


1955 ◽  
Vol 9 ◽  
pp. 17-20 ◽  
Author(s):  
Maurice Heins

It is well-known that the conformal equivalence of a compact simply-connected Riemann surface to the extended plane is readily established once it is shown that given a local uniformizer t(p) which carries a given point p0 of the surface into 0, there exists a function u harmonic on the surface save at p0 which admits near p0 a representation of the form(α complex 0; h harmonic at p0). For the monodromy theorem then implies the existence of a meromorphic function on the surface whose real part is u. Such a meromorphic function has a simple pole at p0 and elsewhere is analytic. It defines a univalent conformal map of the surface onto the extended plane.


2019 ◽  
Vol 40 (8) ◽  
pp. 2017-2072
Author(s):  
MAURO ARTIGIANI ◽  
LUCA MARCHESE ◽  
CORINNA ULCIGRAI

We study Lagrange spectra at cusps of finite area Riemann surfaces. These spectra are penetration spectra that describe the asymptotic depths of penetration of geodesics in the cusps. Their study is in particular motivated by Diophantine approximation on Fuchsian groups. In the classical case of the modular surface and classical Diophantine approximation, Hall proved in 1947 that the classical Lagrange spectrum contains a half-line, known as a Hall ray. We generalize this result to the context of Riemann surfaces with cusps and Diophantine approximation on Fuchsian groups. One can measure excursion into a cusp both with respect to a natural height function or, more generally, with respect to any proper function. We prove the existence of a Hall ray for the Lagrange spectrum of any non-cocompact, finite covolume Fuchsian group with respect to any given cusp, both when the penetration is measured by a height function induced by the imaginary part as well as by any proper function close to it with respect to the Lipschitz norm. This shows that Hall rays are stable under (Lipschitz) perturbations. As a main tool, we use the boundary expansion developed by Bowen and Series to code geodesics and produce a geometric continued fraction-like expansion and some of the ideas in Hall’s original argument. A key element in the proof of the results for proper functions is a generalization of Hall’s theorem on the sum of Cantor sets, where we consider functions which are small perturbations in the Lipschitz norm of the sum.


Author(s):  
Khuanchanok Chaichana ◽  
Pradthana Jaipong

In this study, we work on the Fuchsian group Hm where m is a prime number acting on mℚ^ transitively. We give necessary and sufficient conditions for two vertices to be adjacent in suborbital graphs induced by these groups. Moreover, we investigate infinite paths of minimal length in graphs and give the recursive representation of continued fraction of such vertex.


1997 ◽  
Vol 39 (1) ◽  
pp. 65-76
Author(s):  
Pablo Arés Gastesi

The deformation theory of nonorientable surfaces deals with the problem of studying parameter spaces for the different dianalytic structures that a surface can have. It is an extension of the classical theory of Teichmüller spaces of Riemann surfaces, and as such, it is quite rich. In this paper we study some basic properties of the Teichmüller spaces of non-orientable surfaces, whose parallels in the orientable situation are well known. More precisely, we prove an uniformization theorem, similar to the case of Riemann surfaces, which shows that a non-orientable compact surface can be represented as the quotient of a simply connected domain of the Riemann sphere, by a discrete group of Möbius and anti-Möbius transformation (mappings whose conjugates are Mobius transformations). This uniformization result allows us to give explicit examples of Teichmüller spaces of non-orientable surfaces, as subsets of deformation spaces of orientable surfaces. We also prove two isomorphism theorems: in the first place, we show that the Teichmüller spaces of surfaces of different topological type are not, in general, equivalent. We then show that, if the topological type is preserved, but the signature changes, then the deformations spaces are isomorphic. These are generalizations of the Patterson and Bers-Greenberg theorems for Teichmüller spaces of Riemann surfaces, respectively.


Sign in / Sign up

Export Citation Format

Share Document