Some comments about observations and image processing of comet 29P/Schwassmann-Wachmann 1

1999 ◽  
Vol 173 ◽  
pp. 243-248
Author(s):  
D. Kubáček ◽  
A. Galád ◽  
A. Pravda

AbstractUnusual short-period comet 29P/Schwassmann-Wachmann 1 inspired many observers to explain its unpredictable outbursts. In this paper large scale structures and features from the inner part of the coma in time periods around outbursts are studied. CCD images were taken at Whipple Observatory, Mt. Hopkins, in 1989 and at Astronomical Observatory, Modra, from 1995 to 1998. Photographic plates of the comet were taken at Harvard College Observatory, Oak Ridge, from 1974 to 1982. The latter were digitized at first to apply the same techniques of image processing for optimizing the visibility of features in the coma during outbursts. Outbursts and coma structures show various shapes.

2018 ◽  
Vol 51 (2) ◽  
pp. 242-248 ◽  
Author(s):  
William T. Heller ◽  
Matthew Cuneo ◽  
Lisa Debeer-Schmitt ◽  
Changwoo Do ◽  
Lilin He ◽  
...  

Oak Ridge National Laboratory is home to the High Flux Isotope Reactor (HFIR), a high-flux research reactor, and the Spallation Neutron Source (SNS), the world's most intense source of pulsed neutron beams. The unique co-localization of these two sources provided an opportunity to develop a suite of complementary small-angle neutron scattering instruments for studies of large-scale structures: the GP-SANS and Bio-SANS instruments at the HFIR and the EQ-SANS and TOF-USANS instruments at the SNS. This article provides an overview of the capabilities of the suite of instruments, with specific emphasis on how they complement each other. A description of the plans for future developments including greater integration of the suite into a single point of entry for neutron scattering studies of large-scale structures is also provided.


1999 ◽  
Vol 173 ◽  
pp. 365-370
Author(s):  
Kh.I. Ibadinov

AbstractFrom the established dependence of the brightness decrease of a short-period comet dependence on the perihelion distance of its orbit it follows that part of the surface of these cometary nuclei gradually covers by a refractory crust. The results of cometary nucleus simulation show that at constant insolation energy the crust thickness is proportional to the square root of the insolation time and the ice sublimation rate is inversely proportional to the crust thickness. From laboratory experiments resulted the thermal regime, the gas productivity of the nucleus, covering of the nucleus by the crust, and the tempo of evolution of a short-period comet into the asteroid-like body studied.


2015 ◽  
Vol 12 (108) ◽  
pp. 20150044 ◽  
Author(s):  
Dervis C. Vural ◽  
Alexander Isakov ◽  
L. Mahadevan

Starting with Darwin, biologists have asked how populations evolve from a low fitness state that is evolutionarily stable to a high fitness state that is not. Specifically of interest is the emergence of cooperation and multicellularity where the fitness of individuals often appears in conflict with that of the population. Theories of social evolution and evolutionary game theory have produced a number of fruitful results employing two-state two-body frameworks. In this study, we depart from this tradition and instead consider a multi-player, multi-state evolutionary game, in which the fitness of an agent is determined by its relationship to an arbitrary number of other agents. We show that populations organize themselves in one of four distinct phases of interdependence depending on one parameter, selection strength. Some of these phases involve the formation of specialized large-scale structures. We then describe how the evolution of independence can be manipulated through various external perturbations.


2011 ◽  
Vol 418 (1) ◽  
pp. 214-229 ◽  
Author(s):  
Marco Baldi ◽  
Valeria Pettorino ◽  
Luca Amendola ◽  
Christof Wetterich

Sign in / Sign up

Export Citation Format

Share Document