scholarly journals Solar Opacities Constrained by Solar Neutrinos and Solar Oscillations

1990 ◽  
Vol 121 ◽  
pp. 61-80
Author(s):  
Arthur N. Cox

AbstractThis review discusses the current situation for opacities at the solar center, the solar surface, and for the few million kelvin temperatures that occur below the convection zone. The solar center conditions are important because they are crucial for the neutrino production, which continues to be predicted about 4 times that observed. The main extinction effects there are free-free photon absorption in the electric fields of the hydrogen, helium and the CNO atoms, free electron scattering of photons, and the bound-free and bound-bound absorption of photons by iron atoms with two electrons in the 1s bound level. An assumption that the iron is condensed-out below the convection zone, and the opacity in the central regions is thereby reduced, results in about a 25 percent reduction in the central opacity but only a 5 percent reduction at the base of the convection zone. Furthermore, the p-mode solar oscillations are changed with this assumption, and do not fit the observed ones as well as for standard models. A discussion of the large effective opacity reduction by weakly interacting massive particles (WIMPs or Cosmions) also results in poor agreement with observed p-mode oscillation frequencies. The much larger opacities for the solar surface layers from the Los Alamos Astrophysical Opacity Library instead of the widely used Cox and Tabor values show small improvements in oscillation frequency predictions, but the largest effect is in the discussion of p-mode stability. Solar oscillation frequencies can serve as an opacity experiment for the temperatures and densities, respectively, of a few million kelvin and between 0.1 and 10 g/cm3. Current oscillation frequency calculations indicate that possibly the Opacity Library values need an increase of typically 15 percent just at the bottom of the convection zone at 3×106K. Opacities have uncertainties at the photosphere and deeper than the convection zone ranging from 10 to 25 percent. The equation of state that supplies data for the opacity calculations fortunately has pressure uncertainties of only about 1 percent, but opacity uncertainties will always be much larger. A discussion is given about opacity experiments that the stars provide. Opacities in the envelopes of the Hyades G stars, the Cepheids, δ Scuti variables, and the β Cephei variables indicate that significantly larger opacities, possibly caused by iron lines, seem to be required.

1993 ◽  
Vol 139 ◽  
pp. 151-159
Author(s):  
Arthur N. Cox

AbstractThe current theoretical status of understanding solar oscillations is reviewed. Interpretation of the thousands of well-determined frequencies refines our knowledge of the composition and convection structure of the Sun, since its mass, radius, luminosity, and age are better known from other sources. Recent issues that have been discussed are the solar center structure, bearing on the missing solar neutrino problem, the convection zone helium content, validating helium settling by diffusion, the variations of the oscillation frequencies over the solar cycle, indicating cyclical structure changes in the very outer magnetic layers, and the fine structure splittings of mode frequencies, revealing the internal rotation. Our ability to match observed frequencies to now within only a few microhertz has been enhanced by the recently improved MHD equation of state and the new Livermore OPAL opacities. Thus solar oscillations not only reveal solar structure data, but also they guide improvements for stellar astrophysics material properties. A new discussion of current investigations of the convection zone helium abundance and its depth is presented.


For solar neutrino measurements to contribute directly to particle physics it is essential that we know the structure of the Sun. Only then can we be sure both of the conditions under which the neutrinos are produced and of the state of the material through which they must pass before arriving at the detectors on Earth. Solar oscillations play at least one, and possibly two important roles: firstly, as passive carriers of information about density and sound speed, they provide important diagnostic information which has been used to set quite stringent constraints on the structure of the Sun’s interior; secondly, as active participants in the dynamics of the solar core, it is not out of the question that they induce motion that influences substantially the rates of the various thermonuclear reactions that em it the neutrinos. The basic processes of seismic inference will be discussed briefly, followed by a summary of those inferences that have a bearing on neutrino production. Finally, some of the uncertainties in our understanding of the Sun’s interior will be aired, to restrain the temptation to accept too hastily the details of the simple hydrostatic classical models of the Sun.


1995 ◽  
Vol 10 ◽  
pp. 319-320
Author(s):  
W. Däppen

Since the early 1960s the surface of the Sun has been know to be in a regular pulsating motion with periods of about 5 minutes. While at the beginning various explanations were offered, only in the 1970s it was recognized that these so-called solar oscillations are manifestations of global motions of the Sun about its equilibrium. Helioseismology is the name of the branch of astrophysics that deals with deciphering these data, that cover the whole range of spherical harmonics from l = 0 (radial) to very high angular order (above l = 1000). Thanks to observational data of superb quality (each of the oscillation frequencies is measured accurately to better than one part in ten thousand), our knowledge of the Sun has leap-frogged in the last 20 years. For instance, we now know the run of temperature inside the Sun, or have good information about the internal solar rotation. In the solar neutrino problem the data from solar oscillations have become a compulsory testing stone for any model proposed to explain the discrepancy between observed and theoretically predicted solar neutrinos.


Micromachines ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 161 ◽  
Author(s):  
Jeonglae Kim ◽  
Scott Davidson ◽  
Ali Mani

The onset of electroconvective instability in an aqueous binary electrolyte under external oscillatory electric fields at a single constant frequency is investigated in a 2D parallel flat electrode setup. Direct numerical simulations (DNS) of the Poisson–Nernst–Planck equations coupled with the Navier–Stokes equations at a low Reynolds number are carried out. Previous studies show that direct current (DC) electric field can create electroconvection near ion-selecting membranes in microfluidic devices. In this study, we show that electroconvection can be generated near flat inert electrodes when the applied electric field is oscillatory in time. A range of applied voltage, the oscillation frequency and the ratio of ionic diffusivities is examined to characterize the regime in which electroconvection takes place. Similar to electroconvection under DC voltages, AC electroconvection occurs at sufficiently high applied voltages in units of thermal volts and is characterized by transverse instabilities, physically manifested by an array of counter-rotating vortices near the electrode surfaces. The oscillating external electric field periodically generate and destroy such unsteady vortical structures. As the oscillation frequency is reduced to O ( 10 − 1 ) of the intrinsic resistor–capacitor (RC) frequency of electrolyte, electroconvective instability is considerably amplified. This is accompanied by severe depletion of ionic species outside the thin electric double layer and by vigorous convective transport involving a wide range of scales including those comparable to the distance L between the parallel electrodes. The underlying mechanisms are distinctly nonlinear and multi-dimensional. However, at higher frequencies of order of the RC frequency, the electrolyte response becomes linear, and the present DNS prediction closely resembles those explained by 1D asymptotic studies. Electroconvective instability supports increased electric current across the system. Increasing anion diffusivity results in stronger amplification of electroconvection over all oscillation frequencies examined in this study. Such asymmetry in ionic diffusivity, however, does not yield consistent changes in statistics and energy spectrum at all wall-normal locations and frequencies, implying more complex dynamics and different scaling for electrolytes with unequal diffusivities. Electric current is substantially amplified beyond the ohmic current at high oscillation frequencies. Also, it is found that anion diffusivity higher than cation has stronger impact on smaller-scale motions (≲ 0.1 L).


2000 ◽  
Vol 179 ◽  
pp. 387-388
Author(s):  
Gaetano Belvedere ◽  
V. V. Pipin ◽  
G. Rüdiger

Extended AbstractRecent numerical simulations lead to the result that turbulence is much more magnetically driven than believed. In particular the role ofmagnetic buoyancyappears quite important for the generation ofα-effect and angular momentum transport (Brandenburg & Schmitt 1998). We present results obtained for a turbulence field driven by a (given) Lorentz force in a non-stratified but rotating convection zone. The main result confirms the numerical findings of Brandenburg & Schmitt that in the northern hemisphere theα-effect and the kinetic helicityℋkin= 〈u′ · rotu′〉 are positive (and negative in the northern hemisphere), this being just opposite to what occurs for the current helicityℋcurr= 〈j′ ·B′〉, which is negative in the northern hemisphere (and positive in the southern hemisphere). There has been an increasing number of papers presenting observations of current helicity at the solar surface, all showing that it isnegativein the northern hemisphere and positive in the southern hemisphere (see Rüdigeret al. 2000, also for a review).


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Jørgen Christensen-Dalsgaard

AbstractThe Sun provides a critical benchmark for the general study of stellar structure and evolution. Also, knowledge about the internal properties of the Sun is important for the understanding of solar atmospheric phenomena, including the solar magnetic cycle. Here I provide a brief overview of the theory of stellar structure and evolution, including the physical processes and parameters that are involved. This is followed by a discussion of solar evolution, extending from the birth to the latest stages. As a background for the interpretation of observations related to the solar interior I provide a rather extensive analysis of the sensitivity of solar models to the assumptions underlying their calculation. I then discuss the detailed information about the solar interior that has become available through helioseismic investigations and the detection of solar neutrinos, with further constraints provided by the observed abundances of the lightest elements. Revisions in the determination of the solar surface abundances have led to increased discrepancies, discussed in some detail, between the observational inferences and solar models. I finally briefly address the relation of the Sun to other similar stars and the prospects for asteroseismic investigations of stellar structure and evolution.


2005 ◽  
Vol 93 (5) ◽  
pp. 2435-2448 ◽  
Author(s):  
Fu-Zen Shaw ◽  
Yi-Fang Liao

Paroxysmal 5- to 12-Hz high-voltage rhythmic spike (HVRS) activities, which are accompanied by whisker twitching (WT), are found in Long Evans rats, but the function of these HVRS activities is still debated. In four major functional hypotheses of HVRS discharges, i.e., alpha tremor, attention/mu rhythm, idling/mu rhythm, and absence seizure, the first two hypotheses emphasize WT behavior in HVRS bouts. Whisker movement is primarily determined by activation of intrinsic and extrinsic muscles. To clarify the role of WT in HVRS activities, simultaneous recording of the activities from the cortex and intrinsic/extrinsic and neck muscles were performed. Most HVRS bouts (68.8%) revealed no time-locked WT behavior in a 2-h recording session. In addition, WT primarily arose from active protraction due to activation of intrinsic muscles followed by passive retraction. A small portion of WT resulted from activation of both vibrissae muscles with dynamic frequency-dependent phase shifts. Onset of the rhythmic vibrissae EMG significantly lagged behind HVRS onset, and the mean duration of vibrissae muscle activity was one-third to a one-half of a HVRS bout. Moreover, a greater number of HVRS bouts were associated with a longer HVRS duration and higher oscillation frequency. Oscillation frequencies of HVRS activities without WT behavior were significantly lower than those with WT. Under peripheral sensory/motor blockade by xylocaine injection, oscillation frequencies of HVRS bouts significantly decreased, but no remarkable changes in the number or duration of HVRS bouts were observed. Compared with vibrissa muscle activity during WT and exploratory whisking, the duration of muscular activity in each cycle was apparently longer during whisking bouts. Based on these results, overemphasis of the role of WT on HVRS activities might not be appropriate. Instead, HVRS discharges may be associated with absence seizure or idling state. In addition, peripheral inputs, including WT, may elevate the oscillation frequency of HVRS bouts. Moreover, different muscular controls may exist between WT and whisking.


1991 ◽  
Vol 130 ◽  
pp. 37-56
Author(s):  
Paul H. Roberts

AbstractIn addition to the well-known granulation and supergranulation of the solar convection zone (the “SCZ”), the presence of so-called “giant cells” has been postulated. These are supposed span the entire thickness of the SCZ and to stretch from pole to pole in a sequence of elongated cells like a “cartridge belt” or a bunch of “bananas” strung uniformly round the Sun. Conclusive evidence for the existence of such giant cells is still lacking, despite strenuous observational efforts to find them. After analyses of sunspot motion, Ribes and others believe that convective motions near the solar surface occurs in a pattern that is the antithesis of the cartridge belt: a system of “toroidal” or “doughnut” cells, girdling the Sun in a sequence that extends from one pole to the other. Galloway, Jones and Roberts have recently tried to meet the resulting theoretical challenge, with the mixed success reported in this paper.


1979 ◽  
Vol 46 (2) ◽  
pp. 454-456
Author(s):  
S. O. Onyegegbu

This Note examines the effect of vertical periodic motion on the stability characteristics of a viscoelastic fluid layer in a classical Benard geometry. Numerical solutions show that a resonant type behavior which enhances stability occurs at oscillation frequencies near the convective natural frequency of the viscoelastic fluid, while the effect of the periodic motion vanishes as the oscillation frequency gets very large.


2019 ◽  
Vol 5 (1) ◽  
pp. eaau2307 ◽  
Author(s):  
H. Hotta ◽  
H. Iijima ◽  
K. Kusano

The solar convection zone is filled with turbulent convection in highly stratified plasma. Several theoretical and observational studies suggest that the numerical calculations overestimate the convection velocity. Since all deep convection zone calculations exclude the solar surface due to substantial temporal and spatial scale separations, the solar surface, which drives the thermal convection with efficient radiative cooling, has been thought to be the key to solve this discrepancy. Thanks to the recent development in massive supercomputers, we are successful in performing the comprehensive calculation covering the whole solar convection zone. We compare the results with and without the solar surface in the local domain and without the surface in the full sphere. The calculations do not include the rotation and the magnetic field. The surface region has an unexpectedly weak influence on the deep convection zone. We find that just including the solar surface cannot solve the problem.


Sign in / Sign up

Export Citation Format

Share Document