scholarly journals Tracking ground state Ba+ions in an expanding laser–plasma plume using time-resolved vacuum ultraviolet photoionization imaging

2004 ◽  
Vol 22 (3) ◽  
pp. 207-213 ◽  
Author(s):  
J.S. HIRSCH ◽  
K.D. KAVANAGH ◽  
E.T. KENNEDY ◽  
J.T. COSTELLO ◽  
P. NICOLOSI ◽  
...  

We report results from a study of the integrated column density and expansion dynamics of ground-state-selected Ba+ions in a laser–plasma plume using a new experimental system—VPIF (vacuum-ultraviolet photoabsorption imaging facility). The ions are tracked by recording the attenuation of a pulsed and collimated vacuum ultraviolet beam, tuned to the 5p–6dinner-shell resonance of singly ionized barium, as the expanding plasma plume moves across it. The attenuated beam is allowed to fall on a CCD array where the spatial distribution of the absorption is recorded. Time-resolved ion velocity and integrated column density maps are readily extracted from the photoionization images.

2003 ◽  
Vol 74 (6) ◽  
pp. 2992-2998 ◽  
Author(s):  
J. S. Hirsch ◽  
E. T. Kennedy ◽  
A. Neogi ◽  
J. T. Costello ◽  
P. Nicolosi ◽  
...  

1995 ◽  
Vol 16 (2) ◽  
pp. 121-138 ◽  
Author(s):  
S. Antrobus ◽  
D. Husain ◽  
Jie Lei ◽  
F. Castaño ◽  
M. N. Sanchez Rayo

A time-resolved investigation is presented of the electronic energy distribution in SrI following the collision of the optically metastable strontium atom, Sr [5s5p(3PJ)], with the molecule CF3I. Sr[5s5p(3PJ)], 1.807 eV above its 5s2(1S0) electronic ground state, was generated by pulsed dye-laser excitation of ground state strontium vapour to the Sr(53P1) state at , λ =689.3 nm {Sr(53P1←51S0)} at elevated temperature (840 K) in the presence of excess helium buffer gas in which rapid Boltzmann equilibration within the 53PJ spin-orbit manifold takes place. Time resolved atomic emission from Sr(53P1→51S0) at the resonance transition and the molecular chemiluminescence from SrI(A2∏1,2,3/2,B2∑+→X2∑+) resulting from reaction of the excited atom with CF3I were recorded and shown to be exponential in character. SrI in the A2∏1/2,3/2 (172.5, 175.4 kJ mol-1) and B2∑+ (177.3 kJ mol-1) states are energetically accessible on collision by direct-I-atomic abstraction between Sr(3P) and CF3I. The first-order decay coefficients for the atomic and molecular emissions are found to be equal under identical conditions and hence SrI(A2∏1/2,3/2, B2∑+) are shown to arise from direct I- atom abstraction reactions. The molecular systems recorded were SrI (A2∏1/2→X2∑+, Δv=0, λ=694 nm), SrI(A2∏3/2→X2∑+, Δv=0, λ=677 nm) and SrI(B2∑+→X2∑+) (Δv=0, λ=674 nm), dominated by the Δv=0 sequences on account of Franck-Condon considerations. The combination of integrated m61ecular and atomic intensity measurements yields estimates of the branching ratios into the specific electronic states, A1/2, A3/2 and B, arising from Sr(53PJ)+CF3I which are found to be as follows: A1/2,1.2 × 10-2; A3/2, 6.7 × 10-3; B, 5.1 × 10-3 yielding ∑SrI(A1/2+A3/2+B)=2.4 × 10-2. As only the X, A and B states SrI are accessible on reaction, assuming that the removal of Sr(53PJ) occurs totally by chemical removal, this yields an upper limit for the branching ratio into the ground state of ca. 98%. The present results are compared with previous time-resolved measurements on excited states of strontium halides that we have reported on various halogenated species resulting from reactions of Sr(53PJ), together with analogous chemiluminescence studies on Sr(3PJ) and Ca(43PJ) from molecular beam measurements.


1987 ◽  
Vol 7 (2-4) ◽  
pp. 129-139 ◽  
Author(s):  
Toshiaki Munakata ◽  
Tadahiko Mizukuki ◽  
Akira Misu ◽  
Motowo Tsukakoshi ◽  
Takahiro Kasuya

The photoionization spectrum of HBr around the first ionization limit was measured at resolution of up to 5 x 10−4 nm. The ionizing vacuum ultraviolet radiation was generated by frequency tripling of the second harmonic output of a dye laser. Three sets of Rydberg series, each converging to the ground state (2Π3/2) of HBr+, were observed on the longer wavelength side of the ionization limit. By extrapolation of the Rydberg series, the ionization potential of HBr was determined to be 11.666 ± 0.001 eV.


Sign in / Sign up

Export Citation Format

Share Document