scholarly journals IMPROVING THE PERFORMANCE OF POLLING MODELS USING FORCED IDLE TIMES

2017 ◽  
Vol 32 (4) ◽  
pp. 580-602
Author(s):  
Frank Aurzada ◽  
Sebastian Schwinn

We consider polling models in the sense of Takagi [19]. In our case, the feature of the server is that it may be forced to wait idly for new messages at an empty queue instead of switching to the next station. We propose four different wait-and-see strategies that govern these waiting periods. We assume Poisson arrivals for new messages and allow general service and switchover time distributions. The results are formulas for the mean average queueing delay and characterizations of the cases where the wait-and-see strategies yield a lower delay compared with the exhaustive strategy.

1981 ◽  
Vol 13 (1) ◽  
pp. 186-206 ◽  
Author(s):  
H. C. Tijms ◽  
M. H. Van Hoorn ◽  
A. Federgruen

For the multi-server queue with Poisson arrivals and general service times we present various approximations for the steady-state probabilities of the queue size. These approximations are computed from numerically stable recursion schemes which can be easily applied in practice. Numerical experience reveals that the approximations are very accurate with errors typically below 5%. For the delay probability the various approximations result either into the widely used Erlang delay probability or into a new approximation which improves in many cases the Erlang delay probability approximation. Also for the mean queue size we find a new approximation that turns out to be a good approximation for all values of the queueing parameters including the coefficient of variation of the service time.


1981 ◽  
Vol 13 (01) ◽  
pp. 186-206 ◽  
Author(s):  
H. C. Tijms ◽  
M. H. Van Hoorn ◽  
A. Federgruen

For the multi-server queue with Poisson arrivals and general service times we present various approximations for the steady-state probabilities of the queue size. These approximations are computed from numerically stable recursion schemes which can be easily applied in practice. Numerical experience reveals that the approximations are very accurate with errors typically below 5%. For the delay probability the various approximations result either into the widely used Erlang delay probability or into a new approximation which improves in many cases the Erlang delay probability approximation. Also for the mean queue size we find a new approximation that turns out to be a good approximation for all values of the queueing parameters including the coefficient of variation of the service time.


1997 ◽  
Vol 34 (3) ◽  
pp. 767-772 ◽  
Author(s):  
John A. Barnes ◽  
Richard Meili

The points of a non-stationary Poisson process with periodic intensity are independently shifted forward in time in such a way that the transformed process is stationary Poisson. The mean shift is shown to be minimal. The approach used is to consider an Mt/Gt/∞ queueing system where the arrival process is a non-stationary Poisson with periodic intensity function. A minimal service time distribution is constructed that yields a stationary Poisson departure process.


1998 ◽  
Vol 11 (3) ◽  
pp. 355-368 ◽  
Author(s):  
Robert B. Cooper ◽  
Shun-Chen Niu ◽  
Mandyam M. Srinivasan

The classical renewal-theory (waiting time, or inspection) paradox states that the length of the renewal interval that covers a randomly-selected time epoch tends to be longer than an ordinary renewal interval. This paradox manifests itself in numerous interesting ways in queueing theory, a prime example being the celebrated Pollaczek-Khintchine formula for the mean waiting time in the M/G/1 queue. In this expository paper, we give intuitive arguments that “explain” why the renewal-theory paradox is ubiquitous in queueing theory, and why it sometimes produces anomalous results. In particular, we use these intuitive arguments to explain decomposition in vacation models, and to derive formulas that describe some recently-discovered counterintuitive results for polling models, such as the reduction of waiting times as a consequence of forcing the server to set up even when no work is waiting.


1977 ◽  
Vol 9 (1) ◽  
pp. 141-157 ◽  
Author(s):  
Marcel F. Neuts

This paper discusses a number of explicit formulas for the steady-state features of the queue with Poisson arrivals in groups of random sizes and semi-Markovian service times. Computationally useful formulas for the expected duration of the various busy periods, for the mean numbers of customers served during them, as well as for the lower order moments of the queue lengths, both in discrete and in continuous time, and of the virtual waiting time are obtained. The formulas are recursive matrix expressions, which generalize the analogous but much simpler results for the classical M/G/1 model.


1972 ◽  
Vol 9 (4) ◽  
pp. 803-812 ◽  
Author(s):  
Ben-Tal A. ◽  
E. Hochman

Jensen gave a lower bound to Eρ(T), where ρ is a convex function of the random vector T. Madansky has obtained an upper bound via the theory of moment spaces of multivariate distributions. In particular, Madansky's upper bound is given explicitly when the components of T are independent random variables. For this case, lower and upper bounds are obtained in the paper, which uses additional information on T rather than its mean (mainly its expected absolute deviation about the mean) and hence gets closer to Eρ(T).The importance of having improved bounds is illustrated through a nonlinear programming problem with stochastic objective function, known as the “wait and see” problem.


1996 ◽  
Vol 33 (1) ◽  
pp. 256-266 ◽  
Author(s):  
Sridhar Seshadri

Using sample path analysis we show that under the same load the mean delay in queue in the M/G/2 system is smaller than that in the corresponding M/G/1 system, when the service time has either the DMRL or NBU property and the service discipline is FCFS. The proof technique uses a new device that equalizes the work in a two server system with that in a single sterver system. Other interesting quantities such as the average difference in work between the two servers in the GI/G/2 system and an exact alternate derivation of the mean delay in the M/M/2 system from sample path analysis are presented. For the same load, we also show that the mean delay in the M/G/C system with general service time distribution is smaller than that in the M/G/1 system when the traffic intensity is less than 1/c.


1989 ◽  
Vol 26 (01) ◽  
pp. 152-163 ◽  
Author(s):  
Betsy S. Greenberg

Single-channel queues with Poisson arrivals, general service distributions, and no queue capacity are studied. A customer who finds the server busy either leaves the system for ever or may return to try again after an exponentially distributed time. Steady-state probabilities are approximated and bounded in two different ways. We characterize the service distribution by its Laplace transform, and use this characterization to determine the better method of approximation.


1972 ◽  
Vol 9 (04) ◽  
pp. 803-812 ◽  
Author(s):  
Ben-Tal A. ◽  
E. Hochman

Jensen gave a lower bound to Eρ(T), where ρ is a convex function of the random vector T. Madansky has obtained an upper bound via the theory of moment spaces of multivariate distributions. In particular, Madansky's upper bound is given explicitly when the components of T are independent random variables. For this case, lower and upper bounds are obtained in the paper, which uses additional information on T rather than its mean (mainly its expected absolute deviation about the mean) and hence gets closer to Eρ(T). The importance of having improved bounds is illustrated through a nonlinear programming problem with stochastic objective function, known as the “wait and see” problem.


1967 ◽  
Vol 4 (03) ◽  
pp. 553-570 ◽  
Author(s):  
C. Pearce

A model for the service time structure in the single server queue is given embodying correlations between contiguous and near-contiguous service times. A number of results are derived in the case of Poisson arrivals both for equilibrium and the transient state. In particular, Kendall's (equilibrium) result P (a departure leaves the queue empty) = 1 — (mean service time)/(mean inter-arrival time) is found still to hold good. The effect of the correlation on the mean and variance of the equilibrium queue length distribution is examined in a simple case.


Sign in / Sign up

Export Citation Format

Share Document