Finite groups having unique proper characteristic subgroups. I

Author(s):  
D. R. Taunt

It is well known that a characteristically-simple finite group, that is, a group having no characteristic subgroup other than itself and the identity subgroup, must be either simple or the direct product of a number of isomorphic simple groups. It was suggested to the author by Prof. Hall that finite groups possessing exactly one proper characteristic subgroup would repay attention. We shall call a finite group having a unique proper characteristic subgroup a ‘UCS group’. In the present paper we first give some results on direct products of isomorphic UCS groups, and then we consider in more detail one of the types of UCS groups which can exist, that consisting of groups whose orders are divisible by exactly two distinct primes.

2021 ◽  
Vol 13 (3) ◽  
pp. 59
Author(s):  
Nader Taffach

In this paper, we study the problem of how a finite group can be generated by some subgroups. In order to the finite simple groups, we show that any finite non-abelian simple group can be generated by two Sylow p1 - and p_2 -subgroups, where p_1  and p_2  are two different primes. We also show that for a given different prime numbers p  and q , any finite group can be generated by a Sylow p -subgroup and a q -subgroup.


2016 ◽  
Vol 09 (03) ◽  
pp. 1650054
Author(s):  
E. N. Myslovets

Let [Formula: see text] be a class of finite simple groups. We say that a finite group [Formula: see text] is a [Formula: see text]-group if all composition factors of [Formula: see text] are contained in [Formula: see text]. A group [Formula: see text] is called [Formula: see text]-supersoluble if every chief [Formula: see text]-factor of [Formula: see text] is a simple group. In this paper, properties of mutually permutable products of [Formula: see text]-supersoluble finite groups are studied. Some earlier results on mutually permutable products of [Formula: see text]-supersoluble groups (SC-groups) appear as particular cases.


Author(s):  
Sajjad M. Robati ◽  
M. R. Darafsheh

Let [Formula: see text] be a finite group. We say that a conjugacy class of [Formula: see text] in [Formula: see text] is vanishing if there exists some irreducible character [Formula: see text] of [Formula: see text] such that [Formula: see text]. In this paper, we show that finite groups with at most six vanishing conjugacy classes are solvable or almost simple groups.


2019 ◽  
Vol 18 (12) ◽  
pp. 1950230
Author(s):  
Mariya A. Grechkoseeva ◽  
Andrey V. Vasil’ev ◽  
Mariya A. Zvezdina

We refer to the set of the orders of elements of a finite group as its spectrum and say that finite groups are isospectral if their spectra coincide. In this paper, we determine all finite groups isospectral to the simple groups [Formula: see text], [Formula: see text], and [Formula: see text]. In particular, we prove that with just four exceptions, every such finite group is an extension of the initial simple group by a (possibly trivial) field automorphism.


1968 ◽  
Vol 20 ◽  
pp. 1300-1307 ◽  
Author(s):  
Fletcher Gross

A finite group G is said to be a fixed-point-free-group (an FPF-group) if there exists an automorphism a which fixes only the identity element of G. The principal open question in connection with these groups is whether non-solvable FPF-groups exist. One of the results of the present paper is that if a Sylow p-group of the FPF-group G is the direct product of any number of mutually non-isomorphic cyclic groups, then G has a normal p-complement. As a consequence of this, the conjecture that all FPF-groups are solvable would be true if it were true that every finite simple group has a non-trivial SylowT subgroup of the kind just described. Here it should be noted that all the known simple groups satisfy this property.


1999 ◽  
Vol 60 (2) ◽  
pp. 177-189 ◽  
Author(s):  
K.W. Gruenberg ◽  
L.G. Kovács

Let G be a finite group, F a free group of finite rank, R the kernel of a homomorphism φ of F onto G, and let [R, F], [R, R] denote mutual commutator subgroups. Conjugation in F yields a G-module structure on R/[R, R] let dg(R/[R, R]) be the number of elements required to generate this module. Define d(R/[R, F]) similarly. By an earlier result of the first author, for a fixed G, the difference dG(R/[R, R]) − d(R/[R, F]) is independent of the choice of F and φ; here it is called the proficiency gap of G. If this gap is 0, then G is said to be proficient. It has been more usual to consider dF(R), the number of elements required to generate R as normal subgroup of F: the group G has been called efficient if F and φ can be chosen so that dF(R) = dG(R/[R, F]). An efficient group is necessarily proficient; but (though usually expressed in different terms) the converse has been an open question for some time.


2006 ◽  
Vol 13 (03) ◽  
pp. 471-480
Author(s):  
Zhikai Zhang

In this paper, we first determine the structure of the Sylow p-subgroup P of a finite group G containing no elements of order 2p (p > 2), and then show that the Broué Abelian Defect Groups Conjecture is true for the principal p-block of G. The result depends on the classification of finite simple groups.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Stefanos Aivazidis ◽  
Thomas Müller

Abstract Theorem C in [S. Dolfi, M. Herzog, G. Kaplan and A. Lev, The size of the solvable residual in finite groups, Groups Geom. Dyn. 1 (2007), 4, 401–407] asserts that, in a finite group with trivial Fitting subgroup, the size of the soluble residual of the group is bounded from below by a certain power of the group order and that the inequality is sharp. Inspired by this result and some of the arguments in the above article, we establish the following generalisation: if 𝔛 is a subgroup-closed Fitting formation of full characteristic which does not contain all finite groups and X ¯ \overline{\mathfrak{X}} is the extension-closure of 𝔛, then there exists an (explicitly known and optimal) constant 𝛾 depending only on 𝔛 such that, for all non-trivial finite groups 𝐺 with trivial 𝔛-radical, | G X ¯ | > | G | γ \lvert G^{\overline{\mathfrak{X}}}\rvert>\lvert G\rvert^{\gamma} , where G X ¯ G^{\overline{\mathfrak{X}}} is the X ¯ \overline{\mathfrak{X}} -residual of 𝐺. When X = N \mathfrak{X}=\mathfrak{N} , the class of finite nilpotent groups, it follows that X ¯ = S \overline{\mathfrak{X}}=\mathfrak{S} , the class of finite soluble groups; thus we recover the original theorem of Dolfi, Herzog, Kaplan, and Lev. In the last section of our paper, building on J. G. Thompson’s classification of minimal simple groups, we exhibit a family of subgroup-closed Fitting formations 𝔛 of full characteristic such that S ⊂ X ¯ ⊂ E \mathfrak{S}\subset\overline{\mathfrak{X}}\subset\mathfrak{E} , where 𝔈 denotes the class of all finite groups, thus providing applications of our main result beyond the reach of the above theorem.


Author(s):  
Ilya B. Gorshkov ◽  
Natalia V. Maslova

The spectrum of a finite group is the set of its element orders. In this paper, we prove that the direct product of two copies of the finite simple sporadic group [Formula: see text] is uniquely determined by its spectrum in the class of all finite groups.


2021 ◽  
Vol 31 (2) ◽  
pp. 195-211
Author(s):  
X. Y. Chen ◽  
◽  
A. R. Moghaddamfar ◽  
M. Zohourattar ◽  
◽  
...  

In this paper we investigate some properties of the power graph and commuting graph associated with a finite group, using their tree-numbers. Among other things, it is shown that the simple group L2(7) can be characterized through the tree-number of its power graph. Moreover, the classification of groups with power-free decomposition is presented. Finally, we obtain an explicit formula concerning the tree-number of commuting graphs associated with the Suzuki simple groups.


Sign in / Sign up

Export Citation Format

Share Document