On coefficient ideals

2018 ◽  
Vol 167 (02) ◽  
pp. 285-294 ◽  
Author(s):  
R. CALLEJAS-BEDREGAL ◽  
V. H. JORGE PÉREZ ◽  
M. DUARTE FERRARI

AbstractLet (R, 𝔪) be a Noetherian local ring and I an arbitrary ideal of R with analytic spread s. In [3] the authors proved the existence of a chain of ideals I ⊆ I[s] ⊆ ⋅⋅⋅ ⊆ I[1] such that deg(PI[k]/I) < s − k. In this article we obtain a structure theorem for this ideals which is similar to that of K. Shah in [10] for 𝔪-primary ideals.

Author(s):  
M. Brodmann

In (3), corollary, p. 373) Burch gives the following inequality for the analytic spread l(I) of an ideal I of a noetherian local ring (R, m):In this paper we shall improve this by showing that the number min depth (R/In) may be replaced by the asymptotic value of depth (R/In) for large n (which exists) (see Section (2)). By its definition (see (6), def. 3)) the analytic spread is of asymptotic nature, i.e. depends on the modules In/mIn = Un only for large n. We shall prove a stronger result, Section (4), which also shows the asymptotic nature of l(I). This result might be interesting for itself, particularly as it is not of local nature. Once Section (4) is proved and once we know that depth (R/In) is asymptotically constant (which turns out to be an easy consequence of (1), (1)), our improved inequality is easily established: Indeed, replacing R by R/xR where x is regular with respect to almost all modules (R/In), we perform a change which affects only finitely many of the modules Un (see Section (8)).


2017 ◽  
Vol 121 (1) ◽  
pp. 5 ◽  
Author(s):  
P. H. Lima ◽  
V. H. Jorge Pérez

Let $(R,\mathfrak {m})$ be a quasi-unmixed local ring and $I$ an equimultiple ideal of $R$ of analytic spread $s$. In this paper, we introduce the equimultiple coefficient ideals. Fix $k\in \{1,\dots ,s\}$. The largest ideal $L$ containing $I$ such that $e_{i}(I_{\mathfrak{p} })=e_{i}(L_{\mathfrak{p} })$ for each $i \in \{1,\dots ,k\}$ and each minimal prime $\mathfrak{p} $ of $I$ is called the $k$-th equimultiple coefficient ideal denoted by $I_{k}$. It is a generalization of the coefficient ideals introduced by Shah for the case of $\mathfrak {m}$-primary ideals. We also see applications of these ideals. For instance, we show that the associated graded ring $G_{I}(R)$ satisfies the $S_{1}$ condition if and only if $I^{n}=(I^{n})_{1}$ for all $n$.


2000 ◽  
Vol 43 (1) ◽  
pp. 73-94
Author(s):  
Koji Nishida

AbstractLet (A, m) be a Noetherian local ring such that the residue field A/m is infinite. Let I be arbitrary ideal in A, and M a finitely generated A-module. We denote by ℓ(I, M) the Krull dimension of the graded module ⊕n≥0InM/mInM over the associated graded ring of I. Notice that ℓ(I, A) is just the analytic spread of I. In this paper, we define, for 0 ≤ i ≤ ℓ = ℓ(I, M), certain elements ei(I, M) in the Grothendieck group K0(A/I) that suitably generalize the notion of the coefficients of Hilbert polynomial for m-primary ideals. In particular, we show that the top term eℓ (I, M), which is denoted by eI(M), enjoys the same properties as the ordinary multiplicity of M with respect to an m-primary ideal.


1973 ◽  
Vol 74 (3) ◽  
pp. 441-444 ◽  
Author(s):  
A. Caruth

In a Noetherian commutative ring with identity, every ideal can be expressed (not necessarily uniquely) as a finite intersection of primary ideals (called a primary decomposition). This note is concerned with powers of ideals generated by subsets of an R-sequence in a local ring R (i.e. a Noetherian commutative ring R with identity possessing a unique maximal ideal m) and with a decomposition of such ideals.


2012 ◽  
Vol 110 (1) ◽  
pp. 5 ◽  
Author(s):  
Sean Sather-Wagstaff

We investigate the set $\mathfrak(R)$ of shift-isomorphism classes of semi-dualizing $R$-complexes, ordered via the reflexivity relation, where $R$ is a commutative noetherian local ring. Specifically, we study the question of whether $\mathfrak(R)$ has cardinality $2^n$ for some $n$. We show that, if there is a chain of length $n$ in $\mathfrak(R)$ and if the reflexivity ordering on $\mathfrak (R)$ is transitive, then $\mathfrak(R)$ has cardinality at least $2^n$, and we explicitly describe some of its order-structure. We also show that, given a local ring homomorphism $\varphi\colon R\to S$ of finite flat dimension, if $R$ and $S$ admit dualizing complexes and if $\varphi$ is not Gorenstein, then the cardinality of $\mathfrak (S)$ is at least twice the cardinality of $\mathfrak (R)$.


1982 ◽  
Vol 91 (2) ◽  
pp. 207-213 ◽  
Author(s):  
M. Herrmann ◽  
U. Orbanz

This note consists of some investigations about the condition ht(A) = l(A) where A is an ideal in a local ring and l(A) is the analytic spread of A (9).In (4) we proved the following: If R is a local ring and P a prime ideal such that R/P is regular then (under some technical assumptions) ht(P) = l(P) is equivalent to the equimultiplicity e(R) = e(RP). Also for a general ideal A (which need not be prime), the condition ht(A) = l(A) can be translated into an equality of certain multiplicities (see Theorem 0).


Author(s):  
Martin Olsson

Abstract We prove versions of various classical results on specialisation of fundamental groups in the context of log schemes in the sense of Fontaine and Illusie, generalising earlier results of Hoshi, Lepage and Orgogozo. The key technical result relates the category of finite Kummer étale covers of an fs log scheme over a complete Noetherian local ring to the Kummer étale coverings of its reduction.


2018 ◽  
Vol 17 (11) ◽  
pp. 1850202 ◽  
Author(s):  
Ahad Rahimi

Let [Formula: see text] be a Noetherian local ring and [Formula: see text] a finitely generated [Formula: see text]-module. We say [Formula: see text] has maximal depth if there is an associated prime [Formula: see text] of [Formula: see text] such that depth [Formula: see text]. In this paper, we study finitely generated modules with maximal depth. It is shown that the maximal depth property is preserved under some important module operations. Generalized Cohen–Macaulay modules with maximal depth are classified. Finally, the attached primes of [Formula: see text] are considered for [Formula: see text].


2021 ◽  
Vol 28 (01) ◽  
pp. 13-32
Author(s):  
Nguyen Tien Manh

Let [Formula: see text] be a Noetherian local ring with maximal ideal [Formula: see text], [Formula: see text] an ideal of [Formula: see text], [Formula: see text] an [Formula: see text]-primary ideal of [Formula: see text], [Formula: see text] a finitely generated [Formula: see text]-module, [Formula: see text] a finitely generated standard graded algebra over [Formula: see text] and [Formula: see text] a finitely generated graded [Formula: see text]-module. We characterize the multiplicity and the Cohen–Macaulayness of the fiber cone [Formula: see text]. As an application, we obtain some results on the multiplicity and the Cohen–Macaulayness of the fiber cone[Formula: see text].


1986 ◽  
Vol 102 ◽  
pp. 1-49 ◽  
Author(s):  
Ngô Viêt Trung

Throughout this paper, A denotes a noetherian local ring with maximal ideal m and M a finitely generated A-module with d: = dim M≥1.


Sign in / Sign up

Export Citation Format

Share Document