Ergodic properties and Weyl M-functions for random linear Hamiltonian systems

2000 ◽  
Vol 130 (5) ◽  
pp. 1045-1079 ◽  
Author(s):  
R. Johnson ◽  
S. Novo ◽  
R. Obaya

This paper provides a topological and ergodic analysis of random linear Hamiltonian systems. We consider a class of Hamiltonian equations presenting absolutely continuous dynamics and prove the existence of the radial limits of the Weyl M-functions in the L1-topology. The proof is based on previous ergodic relations obtained for the Floquet coefficient. The second part of the paper is devoted to the qualitative description of disconjugate linear Hamiltonian equations. We show that the principal solutions at ±∞ define singular ergodic measures, and determine an invariant region in the Lagrange bundle which concentrates the essential dynamical information. We apply this theory to the study of the n-dimensional Schrödinger equation at the first point of the spectrum.

2002 ◽  
Vol 44 (10-11) ◽  
pp. 1467-1477 ◽  
Author(s):  
Fanwei Meng ◽  
Yuangong Sun

Sign in / Sign up

Export Citation Format

Share Document