Morphologies of Nonadherent Al2O3 and Matching Substrate Surfaces

Author(s):  
C. S. Giggins ◽  
J. K. Tien ◽  
B. H. Kear ◽  
F. S. Pettit

The performance of most oxidation resistant alloys and coatings is markedly improved if the oxide scale strongly adheres to the substrate surface. Consequently, in order to develop alloys and coatings with improved oxidation resistance, it has become necessary to determine the conditions that lead to spallation of oxides from the surfaces of alloys. In what follows, the morphological features of nonadherent Al2O3, and the substrate surfaces from which the Al2O3 has spalled, are presented and related to oxide spallation.The Al2O3, scales were developed by oxidizing Fe-25Cr-4Al (w/o) and Ni-rich Ni3 (Al,Ta) alloys in air at 1200°C. These scales spalled from their substrates upon cooling as a result of thermally induced stresses. The scales and the alloy substrate surfaces were then examined by scanning and replication electron microscopy.The Al2O3, scales from the Fe-Cr-Al contained filamentary protrusions at the oxide-gas interface, Fig. 1(a). In addition, nodules of oxide have been developed such that cavities were formed between the oxide and the substrate, Fig. 1(a).

2005 ◽  
Vol 11 (5) ◽  
pp. 456-471 ◽  
Author(s):  
Erdmann Spiecker ◽  
Stefan Hollensteiner ◽  
Wolfgang Jäger ◽  
Hans Haselier ◽  
Herbert Schroeder

Analytical transmission electron microscopy (TEM) and scanning electron microscopy (SEM) have been applied for the characterization of evolution, lateral arrangements, orientations, and the microscopic nature of nanostructures formed during the early stages of ultrahigh vacuum electron beam evaporation of Cu onto surfaces of VSe2layered crystals. Linear nanostructure of relatively large lateral dimension (100–500 nm) and networks of smaller nanostructures (lateral dimension: 15–30 nm; mesh sizes: 500–2000 nm) are subsequently formed on the substrate surfaces. Both types of nanostructures are not Cu nanowires but are composed of two strands of crystalline substrate material elevating above the substrate surface. For the large nanostructures a symmetric roof structure with an inclination angle of ∼30° with respect to the substrate surface could be deduced from detailed diffraction contrast experiments. In addition to the nanostructure networks a thin layer of a Cu-VSe2intercalation phase of 3R polytype is observed at the substrate surface. A dense network of interface dislocations indicates that the phase formation is accompanied by in-plane strain. We present a model that explains the formation of large and small nanostructures as consequences of compressive layer strains that are relaxed by the formation of rooflike nanostructures, finally evolving into the observed networks with increasing deposition time. The dominating contributions to the compressive layer strains are considered to be an electronic charge transfer from the Cu adsorbate to the substrate and the formation of a Cu-VSe2intercalation compound in a thin surface layer.


2007 ◽  
Vol 546-549 ◽  
pp. 1485-1488 ◽  
Author(s):  
Shi Yu Qu ◽  
Ya Fang Han ◽  
Jin Xia Song ◽  
Yong Wang Kang

The effects of Cr and Al on high temperature oxidation resistance of Nb-Si system intermetallics have been investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and weight gain method. The results showed that the high temperature oxidation resistance can be substantially improved by proper Cr or Al addition. The further analysis revealed that Cr promotes the formation of CrNbO4 in scale and improve the adherence between the oxide scale and the substrate. It also found that Al improves the surface morphology of oxide scale and changes oxidation products by promoting the AlNbO4 formation.


Author(s):  
L. P. Lemaire ◽  
D. E. Fornwalt ◽  
F. S. Pettit ◽  
B. H. Kear

Oxidation resistant alloys depend on the formation of a continuous layer of protective oxide scale during the oxidation process. The initial stages of oxidation of multi-component alloys can be quite complex, since numerous metal oxides can be formed. For oxidation resistance, the composition is adjusted so that selective oxidation occurs of that element whose oxide affords the most protection. Ideally, the protective oxide scale should be i) structurally perfect, so as to avoid short-circuit diffusion paths, and ii) strongly adherent to the alloy substrate, which minimizes spalling in response to thermal cycling. Small concentrations (∼ 0.1%) of certain reactive elements, such as yttrium, markedly improve the adherence of oxide scales in many alloy systems.


Author(s):  
D.P. Malta ◽  
S.A. Willard ◽  
R.A. Rudder ◽  
G.C. Hudson ◽  
J.B. Posthill ◽  
...  

Semiconducting diamond films have the potential for use as a material in which to build active electronic devices capable of operating at high temperatures or in high radiation environments. A major goal of current device-related diamond research is to achieve a high quality epitaxial film on an inexpensive, readily available, non-native substrate. One step in the process of achieving this goal is understanding the nucleation and growth processes of diamond films on diamond substrates. Electron microscopy has already proven invaluable for assessing polycrystalline diamond films grown on nonnative surfaces.The quality of the grown diamond film depends on several factors, one of which is the quality of the diamond substrate. Substrates commercially available today have often been found to have scratched surfaces resulting from the polishing process (Fig. 1a). Electron beam-induced current (EBIC) imaging shows that electrically active sub-surface defects can be present to a large degree (Fig. 1c). Growth of homoepitaxial diamond films by rf plasma-enhanced chemical vapor deposition (PECVD) has been found to planarize the scratched substrate surface (Fig. 1b).


Author(s):  
F. Shaapur

Non-uniform ion-thinning of heterogenous material structures has constituted a fundamental difficulty in preparation of specimens for transmission electron microscopy (TEM). A variety of corrective procedures have been developed and reported for reducing or eliminating the effect. Some of these techniques are applicable to any non-homogeneous material system and others only to unidirectionalfy heterogeneous samples. Recently, a procedure of the latter type has been developed which is mainly based on a new motion profile for the specimen rotation during ion-milling. This motion profile consists of reversing partial revolutions (RPR) within a fixed sector which is centered around a direction perpendicular to the specimen heterogeneity axis. The ion-milling results obtained through this technique, as studied on a number of thin film cross-sectional TEM (XTEM) specimens, have proved to be superior to those produced via other procedures.XTEM specimens from integrated circuit (IC) devices essentially form a complex unidirectional nonhomogeneous structure. The presence of a variety of mostly lateral features at different levels along the substrate surface (consisting of conductors, semiconductors, and insulators) generally cause non-uniform results if ion-thinned conventionally.


2008 ◽  
Vol 42 ◽  
pp. 14-22
Author(s):  
S. I. Genkal ◽  
V. G. Kharitonov

This electron microscopy study of the materials from ultraoligotrophic lake Elgygytgyn (Chukotka) revealed variability of morphological features in Hannaea arcus var. arcus and H. arcus var. recta. An emended diagnosis for H. arcus var. arcus is presented, and a new combination in specific rank is published: H. inaequidentata (Lagerstedt) Genkal et Kharitonov (= H. arcus var. recta).


Alloy Digest ◽  
2001 ◽  
Vol 50 (1) ◽  

Abstract Sandvik 7RE10 is a 25Cr/20Ni oxidation-resistant alloy with good carburization and oxidation resistance. It is typically used as furnace tubing. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-812. Producer or source: Sandvik.


Author(s):  
Ihab Nabeel Safi ◽  
Basima Mohammed Ali Hussein ◽  
Hikmat J. Aljudy ◽  
Mustafa S. Tukmachi

Abstract Objectives Dental implant is a revolution in dentistry; some shortages are still a focus of research. This study use long duration of radiofrequency (RF)–magnetron sputtering to coat titanium (Ti) implant with hydroxyapatite (HA) to obtain a uniform, strongly adhered in a few micrometers in thickness. Materials and Methods Two types of substrates: discs and root form cylinders were prepared using a grade 1 commercially pure (CP) Ti rod. A RF–magnetron sputtering device was used to coat specimens with HA. Magnetron sputtering was set at 150 W for 22 hours at 100°C under continuous argon gas flow and substrate rotation at 10 rpm. Coat properties were evaluated via field emission scanning electron microscopy (FESEM), scanning electron microscopy–energy dispersive X-ray (EDX) analysis, atomic force microscopy, and Vickers hardness (VH). Student’s t-test was used. Results All FESEM images showed a homogeneous, continuous, and crack-free HA coat with a rough surface. EDX analysis revealed inclusion of HA particles within the substrate surface in a calcium (Ca)/phosphorus (P) ratio (16.58/11.31) close to that of HA. Elemental and EDX analyses showed Ca, Ti, P, and oxygen within Ti. The FESEM views at a cross-section of the substrate showed an average of 7 µm coat thickness. Moreover, these images revealed a dense, compact, and uniform continuous adhesion between the coat layer and the substrate. Roughness result indicated highly significant difference between uncoated Ti and HA coat (p-value < 0.05). A significant improvement in the VH value was observed when coat hardness was compared with the Ti substrate hardness (p-value < 0.05). Conclusion Prolonged magnetron sputtering successfully coat Ti dental implants with HA in micrometers thickness which is well adhered essentially in excellent osseointegration.


1991 ◽  
Vol 113 (3) ◽  
pp. 258-262 ◽  
Author(s):  
J. G. Stack ◽  
M. S. Acarlar

The reliability and life of an Optical Data Link transmitter are inversely related to the temperature of the LED. It is therefore critical to have efficient packaging from the point of view of thermal management. For the ODL® 200H devices, it is also necessary to ensure that all package seals remain hermetic throughout the stringent military temperature range requirements of −65 to +150°C. For these devices, finite element analysis was used to study both the thermal paths due to LED power dissipation and the thermally induced stresses in the hermetic joints due to ambient temperature changes


Biologia ◽  
2008 ◽  
Vol 63 (4) ◽  
Author(s):  
Patrycja Boszke ◽  
Mariusz Pełechaty ◽  
Andrzej Pukacz

AbstractMorphological features of oospores of a rarely noted species Chara braunii Gmel. were examined in a local population (fishpond near Tuplice village, Ziemia Lubuska region, mid-western Poland). The largest polar axis (LPA, length), largest equatorial diameter (LED, width), isopolarity index (ISI = LPA/LED* 100), and the number of ridges and width of fossa of 90 oospores were measured. Additionally, the oospore wall ornamentation pattern was examined by means of scanning electron microscopy (SEM). As a result, a cylindrical shape and the lack of so-called “shoulder” were found. Oospore length and width ranged between 466.8–600.1 µm and 250.1–366.7 µm, respectively, with the ISI index values between 148 and 213. The number of ridges was 8–10 and the width of fossa varied between 50.0 and 66.7 µm. The oospore width appeared to be the most changeable feature, whereas, by contrast, the number of ridges was the least variable character. Wall ornamentation can be described as tuberculate and a ribbon was present on the ridges. As a comparative material for the study performed, 9 oospores from Professor Izabela Dąmbska’s Collection of Charophytes of Poland were measured. It was evidenced that variation ranges of most of the features of Chara braunii oospores from Tuplice fishpond are similar to those of Professor Dąmbska’s herbarium materials and to data reported by authors from other countries as well. The morphology of reproductive structures does not follow the variation of thalli characteristics.


Sign in / Sign up

Export Citation Format

Share Document