Dynamic studies of silicide-mediated crystallization of amorphous silicon

Author(s):  
C. Hayzelden ◽  
J. L. Batstone

Epitaxial reordering of amorphous Si(a-Si) on an underlying single-crystal substrate occurs well below the melt temperature by the process of solid phase epitaxial growth (SPEG). Growth of crystalline Si(c-Si) is known to be enhanced by the presence of small amounts of a metallic phase, presumably due to an interaction of the free electrons of the metal with the covalent Si bonds near the growing interface. Ion implantation of Ni was shown to lower the crystallization temperature of an a-Si thin film by approximately 200°C. Using in situ transmission electron microscopy (TEM), precipitates of NiSi2 formed within the a-Si film during annealing, were observed to migrate, leaving a trail of epitaxial c-Si. High resolution TEM revealed an epitaxial NiSi2/Si(l11) interface which was Type A. We discuss here the enhanced nucleation of c-Si and subsequent silicide-mediated SPEG of Ni-implanted a-Si.Thin films of a-Si, 950 Å thick, were deposited onto Si(100) wafers capped with 1000Å of a-SiO2. Ion implantation produced sharply peaked Ni concentrations of 4×l020 and 2×l021 ions cm−3, in the center of the films.

1998 ◽  
Vol 4 (3) ◽  
pp. 248-253 ◽  
Author(s):  
M. Yeadon ◽  
J.C. Yang ◽  
R.S. Averback ◽  
J.M. Gibson

We discuss various techniques for the characterization of supported nanoparticles by in situ plan-view transmission electron microscopy. In particular, we discuss here mechanisms of image contrast formation by particles undergoing reorientation on the surface of a single crystal substrate. We consider reorientation by a variety of mechanisms including rotation, sintering and grain growth, and surface diffusion. Experimental observations are presented and the data compared with theoretical predictions.


1987 ◽  
Vol 93 ◽  
Author(s):  
C. W. White ◽  
L. A. Boatner ◽  
J. Rankin ◽  
M. J. Aziz

ABSTRACTIon implantation damage and thermal annealing results are presented for single crystals of SrTiO3 and CaTiO3. The near-surface region of both of these materials can be made amorphous by low doses (∼1015/cm2 ) of heavy ions (Pb at 540 keV). During annealing, the amorphous implanted region crystallizes epitaxially on the underlying single-crystal substrate. The kinetics of this solid-phase epitaxial recrystallization process have been measured by employing ion channeling techniques.


1989 ◽  
Vol 160 ◽  
Author(s):  
T. L. Lin ◽  
C. W. Nieh

AbstractEpitaxial IrSi3 films have been grown on Si (111) by molecular beam epitaxy (MBE) at temperatures ranging from 630 to 800 °C and by solid phase epitaxy (SPE) at 500 °C. Good surface morphology was observed for IrSi3 layers grown by MBE at temperatures below 680 °C, and an increasing tendency to form islands is noted in samples grown at higher temperatures. Transmission electron microscopy (TEM) analysis reveals that the IrSi3 layers grow epitaxially on Si(111) with three epitaxial modes depending on the growth conditions. For IrSi3 layers grown by MBE at 630 °C, two epitaxial modes were observed with ~ 50% area coverage for each mode. Single mode epitaxial growth was achieved at a higher MBE growth temperature, but with island formation in the IrSi3 layer. A template technique was used with MBE to improve the IrSi3 surface morphology at higher growth temperatures. Furthermore, single-crystal IrSi3 was grown on Si(111) at 500 °C by SPE, with annealing performed in-situ in a TEM chamber.


1991 ◽  
Vol 237 ◽  
Author(s):  
Toyohiko J. Konno ◽  
Robert Sinclair

ABSTRACTThe crystallization of sputter-deposited Si/Al amorphous alloys was examined by transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). In-situ high-resolution TEM reveals the existence of an Al layer between the amorphous matrix and the growing crystalline phase. The activation energy for the growth is about 1.2eV, roughly corresponding to the activation energy of Si diffusion in Al. These two observations support the view that a crystallization mechanism, in which an Al buffer layer provides the shortest reaction path, is responsible for the reaction. The product microstructure exhibits secondary crystallization at a higher temperature.


1998 ◽  
Vol 4 (3) ◽  
pp. 269-277 ◽  
Author(s):  
A. Agrawal ◽  
J. Cizeron ◽  
V.L. Colvin

In this work, the high-temperature behavior of nanocrystalline TiO2 is studied using in situ transmission electron microscopy (TEM). These nanoparticles are made using wet chemical techniques that generate the anatase phase of TiO2 with average grain sizes of 6 nm. X-ray diffraction studies of nanophase TiO2 indicate the material undergoes a solid-solid phase transformation to the stable rutile phase between 600° and 900°C. This phase transition is not observed in the TEM samples, which remain anatase up to temperatures as high as 1000°C. Above 1000°C, nanoparticles become mobile on the amorphous carbon grid and by 1300°C, all anatase diffraction is lost and larger (50 nm) single crystals of a new phase are present. This new phase is identified as TiC both from high-resolution electron microscopy after heat treatment and electron diffraction collected during in situ heating experiments. Video images of the particle motion in situ show the nanoparticles diffusing and interacting with the underlying grid material as the reaction from TiO2 to TiC proceeds.


2003 ◽  
Vol 776 ◽  
Author(s):  
Xicheng Ma ◽  
Yuanhua Cai ◽  
Xia Li ◽  
Ning Lun ◽  
Shulin Wen

AbstractHigh-quality cobalt-filled carbon nanotubes (CNTs) were prepared in situ in the decomposition of benzene over Co/silica-gel nano-scale catalysts. Unlike the previous reports, the catalysts needn't be pre-reduced prior to the forming of Co-filled CNTs, thus the advantage of this method is that Co-filled CNTs can be produced in one step, at a relatively low cost. Transmission electron microscopy (TEM) investigation showed that the products contained abundance of CNTs and most of them were filled with metallic nanoparticles or nanorods. High-resolution TEM (HRTEM), selected area electron diffraction (SAED) patterns and energy dispersive X-ray spectroscopy (EDS) confirmed the presence of Co inside the nanotubes. The encapsulated Co was further identified always as high temperature alpha-Co phase with fcc structure, which frequently consists of twinned boundaries and stacking faults. Based on the experimental results, a possible growth mechanism of the Co-filled CNTs was proposed.


2002 ◽  
Vol 742 ◽  
Author(s):  
In-Tae Bae ◽  
Manabu Ishimaru ◽  
Yoshihiko Hirotsu

ABSTRACTAmorphous silicon carbides (a-SiC) fabricated by Xe+ ion implantation into 6H-SiC (0001) to fluences of 1015 and 1016/cm2 have been annealed at 850 °C for 1 hour. Transmission electron microscopy (TEM) observations revealed that the 1015 Xe+/cm2 implanted sample was completely recrystallized, while most of the a-SiC remains in the 1016 Xe+/cm2 implanted sample. Pair-distribution function analyses of both of the as-implanted samples show that the peak intensity of Si-C heteronuclear bonds is higher and the peak intensities of Si-Si and C-C homonuclear bonds are lower in the 1015 Xe+/cm2 implanted sample, indicating that the atomistic structure of the 1015 Xe+/cm2 implanted sample is more chemically ordered than that of the 1016 Xe+/cm2 implanted sample. This result suggests that more chemically ordered atomistic structure of 1015 Xe+/cm2 implanted a-SiC leads to complete recrystallization during thermal annealing.


1991 ◽  
Vol 249 ◽  
Author(s):  
Gabriel Braunstein ◽  
Gustavo R. Paz-Pujalt

ABSTRACTWe demonstrate the homoepitaxial growth of SrTiO3 prepared by the method of metallo-organic decomposition (MOD). Thin films of SrTiO3 are prepared by spin-coating and thermal decomposition of a solution of metallo-organic compounds, on single crystal, <100> oriented, SrTiO3 substrates and subsequently heat treated at temperatures ranging from 650°C to 1100°C for 30 minutes. Heat treatment at 1100°C results in the formation of single-crystal SrTiO3, perfectly aligned with respect to the underlying substrate.Ion-channeling analysis shows that the transformation to singlecrystal material proceeds epitaxially from the coating-substrate interface towards the surface of the sample. Transmission electron microscopy (TEM) studies of partially regrown samples reveal two distinct phases: an epitaxially aligned single-crystal phase, adjacent to the substrate, and a polycrystalline phase on top. On the basis of these observations, it is proposed that the crystallization of the MOD films involves the competition between two processes: layer-by-layer solid phase epitaxy and random nucleation and growth of crystallites. Layerby- layer epitaxy is the predominant crystallization mechanism unless it is inhibited by extrinsic factors like the contamination of the interface between the MOD film and the single-crystal substrate.


Sign in / Sign up

Export Citation Format

Share Document