Influence of ion-milling on the T2 phase in Al-2.5%Li-2.5%Cu alloy

Author(s):  
J. R. Reed ◽  
D. J. Michel ◽  
P. R. Howell

The Al6Li3Cu (T2) phase, which exhibits five-fold or icosahedral symmetry, forms through solid state precipitation in dilute Al-Li-Cu alloys. Recent studies have reported that the T2 phase transforms either during TEM examination of thin foils or following ion-milling of thin foil specimens. Related studies have shown that T2 phase transforms to a microcrystalline array of the TB phase and a dilute aluminum solid solution during in-situ heating in the TEM. The purpose of this paper is to report results from an investigation of the influence of ion-milling on the stability of the T2 phase in dilute Al-Li-Cu alloy.The 3-mm diameter TEM disc specimens were prepared from a specially melted Al-2.5%Li-2.5%Cu alloy produced by conventional procedures. The TEM specimens were solution heat treated 1 h at 550°C and aged 1000 h at 190°C in air to develop the microstructure. The disc specimens were electropolished to achieve electron transparency using a 20:80 (vol. percent) nitric acid: methanol solution at -60°C.

Author(s):  
J. R. Reed ◽  
D. J. Michel ◽  
P. R. Howell

Recent studies have shown that the T2 (Al6CuLi3) phase particles in dilute Al-Li-Cu alloys transform to microcrystalline aggregates during TEM examination, during ion-beam thinning, or during in- situ heating in the TEM. Other studies, however, have noted that the T2 phase particles exhibit an ‘apparent’ five-fold symmetry suggesting that microcrystalline or twinned regions, rather than ‘single crystal’ regions, were responsible for the five-fold diffraction patterns. As a consequence, additional work was considered necessary to investigate further the stability of the T2 phase in dilute Al-Li-Cu alloys.The 3-mm diameter TEM disc specimens were prepared from a specially melted Al-2.5%Li-2.5%Cu alloy produced by conventional procedures. The TEM specimen thermal treatment and electropolishing procedures were previously reported. The electropolished disc specimens were examined in a JEOL 200CX microscope operated at 200 kV. Selected disc specimens containing the T2 phase were then subjected to ion beam thinning in a Gatan precision ion-milling system, operated with an argon ion beam, at accelerating voltage of 6 kV and a beam current of lμA.


Author(s):  
D.I. Potter ◽  
A. Taylor

Thermal aging of Ni-12.8 at. % A1 and Ni-12.7 at. % Si produces spatially homogeneous dispersions of cuboidal γ'-Ni3Al or Ni3Si precipitate particles arrayed in the Ni solid solution. We have used 3.5-MeV 58Ni+ ion irradiation to examine the effect of irradiation during precipitation on precipitate morphology and distribution. The nearness of free surfaces produced unusual morphologies in foils thinned prior to irradiation. These thin-foil effects will be important during in-situ investigations of precipitation in the HVEM. The thin foil results can be interpreted in terms of observations from bulk irradiations which are described first.Figure 1a is a dark field image of the γ' precipitate 5000 Å beneath the surface(∿1200 Å short of peak damage) of the Ni-Al alloy irradiated in bulk form. The inhomogeneous spatial distribution of γ' results from the presence of voids and dislocation loops which can be seen in the bright field image of the same area, Fig. 1b.


Author(s):  
S. McKernan ◽  
C. B. Carter

The oxidation of natural olivine has previously been performed on bulk samples and the reactions followed by preparation of TEM specimens from the annealed material. These results show that below ∼1000°C hematite and amorphous silica are formed, particularly around dislocations. At higher temperatures magnetite and some enstatite-like phase are formed. In both cases the olivine is left almost totally Fe depleted. By performing the oxidation on characterized thin TEM specimens it is possible to obtain more information on the nucleation and growth of the second phases formed. The conditions in a thin foil, however, are very different from those in the bulk especially with regard to surface effects. The nucleation of precipitates in particular may be expected to occur differently in these thin foils than in the bulk.TEM specimens of natural olivine (approximate composition Mg+Fe+Si2o4) which had been annealed at 1000°C for 1 hr were prepared by mechanical polishing and dimpling, followed by Ar ion milling to perforation. The specimens were characterized in the electron microscope and then heated in air in alumina boats to 900°C for between 30 and 180 minutes.


2017 ◽  
Vol 50 (4) ◽  
pp. 1028-1035 ◽  
Author(s):  
Hongbing Yu ◽  
Zhongwen Yao ◽  
Fei Long ◽  
Peyman Saidi ◽  
Mark R. Daymond

This study reportsin situobservations of the formation of the δ′-ZrO phase, occurring during the annealing of transmission electron microscopy (TEM) thin foils of both pure Zr and a Zr–Sn–Nb–Mo alloy at 973 K in a transmission electron microsope. The lattice parameters of δ′-ZrO were measured and determined to be similar to those of the ω-Zr phase. The orientation relationship between the δ′-ZrO and α-Zr phases has been identified as either {(11 \overline{2}0)}_{\rm ZrO}//{(0002)}_{\alpha} and {[0002]}_{\rm ZrO}//{[11 \overline{2}0]}_{\alpha} or {(\overline{1}011)}_{\rm ZrO}//{(0002)}_{\alpha} and {[01{\overline 1}1]_{{\rm{ZrO}}}}//{[11{\overline 2}0]_\alpha} depending on the orientation of the α grain relative to the TEM thin-foil normal. The nucleation and growth of δ′-ZrO were dynamically observed. This study suggests a new and convenient way to study oxidation mechanisms in Zr alloys and provides a deeper understanding of the properties of the newly reported δ′-ZrO. Since δ′-ZrO has a Zr sublattice which is identical to that of ω-Zr, the orientation relationships between the α and δ′-ZrO phases may also shed light on the orientation relations existing between α- and ω-Zr, and hence α- and ω-Ti.


Author(s):  
Thao A. Nguyen ◽  
Linn W. Hobbs

The low temperature phase relation of iron sulfide compounds Fe1-xS, with composition ranging from FeS to Fe7S8, has been investigated extensively over the past several decades. Despite these efforts conflicting reports on the stability of low temperature phases still exist and major disagreements between proposed phase diagrams remain unresolved. In this paper we report preliminary findings of our effort to determine whether the low temperature iron sulfide compounds form a homologous series Fen-l,Sn n≥ 8 [1] or a solid solution [2]. We have examined the stability of iron sulfide crystal of composition Fe9S10 using in situ heating experiment and image contrast transmission electron microscopy. We have found that Fe9S10 decomposes to two distinct phases. These two phases are labelled as H and K phases.


2016 ◽  
Vol 89 (9-12) ◽  
pp. 3547-3561 ◽  
Author(s):  
Shoaib Sarfraz ◽  
Mirza Jahanzaib ◽  
Ahmad Wasim ◽  
Salman Hussain ◽  
Haris Aziz

2010 ◽  
Vol 146-147 ◽  
pp. 1365-1368 ◽  
Author(s):  
Li Mei Cha ◽  
Helmut Clemens ◽  
Gerhard Dehm ◽  
Zao Li Zhang

In-situ heating transmission electron microscopy (TEM) was employed to investigate the initial stage of lamellae formation in a high Nb containing γ-TiAl based alloy. A Ti-45Al-7.5Nb alloy (at %), which was heat treated and quenched in a non-equilibrium state such that the matrix consists of ordered a2 grains, was annealed inside a TEM up to 750 °C. The in-situ TEM study reveals that g laths precipitate in the a2 matrix at ~ 750 °C possessing the classical Blackburn orientation relationship, i.e. (0001)a2 // (111)g and [11-20]a2 // <110]g. The microstructure of the in-situ TEM experiment is compared to results from ex-situ heating and subsequent TEM studies.


2006 ◽  
Vol 503-504 ◽  
pp. 585-590 ◽  
Author(s):  
Rinat K. Islamgaliev ◽  
N.F. Yunusova ◽  
Ruslan Valiev

Recent studies have demonstrated that ultrafinе-grainеd (UFG) alloys processed by equal channel angular pressing (ECAP) and high pressure torsion (HPT) can exhibit enhanced supеrplacticity at relatively low temperature and/or high strain rates. At the same time severe plastic deformation (SPD) of aluminium alloys is often carried out at elevated temperatures leading to various grain size and volume fraction of precipitates. The significance of the SPD temperature for commercial 1420 and 1421 aluminium alloys has been evaluated in this paper using in-situ heating of thin foils in the column of a transmission electron microscope. Superplastic characteristics of alloys processed at various ECAP temperatures are discussed.


2020 ◽  
Vol 50 (1) ◽  
Author(s):  
Yena Kwon ◽  
Byeong-Seon An ◽  
Yeon-Ju Shin ◽  
Cheol-Woong Yang

Abstract In-situ transmission electron microscopy (TEM) holders that employ a chip-type specimen stage have been widely utilized in recent years. The specimen on the microelectromechanical system (MEMS)-based chip is commonly prepared by focused ion beam (FIB) milling and ex-situ lift-out (EXLO). However, the FIB-milled thin-foil specimens are inevitably contaminated with Ga+ ions. When these specimens are heated for real time observation, the Ga+ ions influence the reaction or aggregate in the protection layer. An effective method of removing the Ga residue by Ar+ ion milling within FIB system was explored in this study. However, the Ga residue remained in the thin-foil specimen that was extracted by EXLO from the trench after the conduct of Ar+ ion milling. To address this drawback, the thin-foil specimen was attached to an FIB lift-out grid, subjected to Ar+ ion milling, and subsequently transferred to an MEMS-based chip by EXLO. The removal of the Ga residue was confirmed by energy dispersive spectroscopy.


2018 ◽  
Vol 385 ◽  
pp. 206-211
Author(s):  
Miloš Janeček ◽  
Kristina Bartha ◽  
Josef Stráský ◽  
Jozef Veselý ◽  
Veronika Polyakova ◽  
...  

Metastable β-Ti alloys including Ti15Mo alloy are perspective candidates for use in medical applications. During thermal treatment Ti15Mo alloy undergoes various phase transformations. After solution treatment it contains metastable β-phase and ω-phase. During annealing the ω-phase partially dissolves as well as stable α-phase particles are formed. The solution treated Ti15Mo alloy was deformed by high pressure torsion (HPT) at room temperature. Significant grain refinement with grain size of ~100 nm was achieved even after 1/4 of HPT rotation. The effect of the ultra-fine grained (UFG) structure achieved by HPT on the phase transformations was studied by differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) during in-situ heating. High density of lattice defects, dense network of grain boundaries as well as ongoing recovery and recrystallization upon heating significantly affected the phase transitions. Observation of the microstructure during in-situ heating in TEM revealed no representative changes in transparent part of the sample due to the “thin foil effect”.


Sign in / Sign up

Export Citation Format

Share Document