Correlative STM, FESEM, and TEM studies of fibrillar structures in liquid crystalline polymers

Author(s):  
I. H. Musselman ◽  
P.E. Russell ◽  
R.T. Chen ◽  
M.G. Jamieson ◽  
L.C. Sawyer

Hierarchical fibrillar structures have been reported to be present in liquid crystalline polymer (LCP) extrudates such as fibers and tapes. Using conventional scanning and transmission electron microscopy (SEM, TEM), the smallest fibrils were shown to be about 50 nm wide and 5 nm thick. With the emergence of higher resolution imaging techniques such as scanning tunneling microscopy (STM) and field emission SEM (FESEM), we have been able to further explore the ultrastructures in the LCP fibrils and extend the LCP structural model.The LCP materials investigated consist of copolyesters of 4-hydroxybenzoic acid (HBA) and 2- hydroxy-6-napthoic acid (HNA) in the form of melt-spun fibers and extruded tapes. These materials exhibit unidirectionally-oriented structures as revealed by x-ray diffraction and microscopy studies. For STM and FESEM, samples were prepared by a peel-back method which reveals the internal structures of fibrils. In addition, ultrasonication was used to disintegrate the LCP fibers and tapes to provide fine “fibrillar” samples for STM, FESEM, and TEM studies. The original tape and fiber surfaces were also examined by STM and FESEM. Thin Pt coatings (ca. 5 nm) were deposited on the LCP samples using ion beam sputtering to provide a conducting surface for STM and FESEM imaging. These coatings have been shown to introduce minimal topography to the original sample surface.

2006 ◽  
Vol 21 (6) ◽  
pp. 1550-1560 ◽  
Author(s):  
Sang Ho Oh ◽  
Chan Gyung Park

Surface evolution was studied for strained SrRuO3 films with a nominal 75 nm thickness deposited at various substrate temperatures (650–850 °C). Epitaxial growth of the films was achieved on single TiO2-terminated SrTiO3 (001) substrates by using ion-beam sputtering. The surface morphology of the deposited films was investigated by scanning tunneling microscopy in ambient conditions, and their microstructure was characterized by transmission electron microscopy. The self-organized step-terrace structure was observed for the films deposited at lower than 800 °C, suggesting that the epitaxial growth proceeded by step-flow growth. In particular, each film showed characteristic surface evolutions pertinent to the misfit strain relaxation stage, mostly influenced by the moving segment of misfit dislocations threading up to the surface: surface undulations for the film at the initial stage of relaxation (deposited at 650 °C), circular growth spirals during the relaxation stage (700 °C), and well-ordered step-terrace structure after almost full development of misfit dislocations (750 and 800 °C).


Author(s):  
Linda C. Sawyer

Structure models have been developed for the liquid crystalline polymers (LCPs), showing the existence of fibrillar hierarchies for both the lyotropic aramids and the thermotropic aromatic copolyesters. Hierarchies of structure have also been observed for biological materials. The nature of the smallest nanostructure that aggregates, typically microfibrils, and their interaction, are important in understanding the behavior of the material. This paper discusses the first application of scanning tunneling microscopy (STM) and field emission scanning electron microscopy (FESEM) to image the microfibrils in LCPs, in the 1-10 nm size range, resulting in a new LCP structural model.The structure model proposed earlier, was based on the study of Vectra® thermotropic LCP moldings and extrudates, and Vectran® and Kevlar® fibers. The model resulted from characterization by light microscopy, and transmission and scanning electron microscopy. Recent studies of similar fibers by STM and low voltage FESEM has provided additional insights. Details of single microfibrils and their aggregation into fibrils and macrofibrils was shown.


1994 ◽  
Vol 332 ◽  
Author(s):  
K. D. Jandt ◽  
T. J. Mcmaster ◽  
D. G. Mcdonnell ◽  
J. M. Blackmore ◽  
M. J. Miles

ABSTRACTRecent progress in the field of liquid crystal materials and oriented polymers studied by nearfield scanned probe microscopies (SPM) is presented here. The investigations were focused on scanning tunneling microscopy (STM) results of antiferroelectric liquid crystalline molecules observed at different elevated temperatures corresponding to different bulk mesophases of the material, and on surface morphological studies of a liquid crystalline polymer by scanning force microscopy (SFM). In the field of oriented thermoplastic polymers, SFM images of the morphology and molecular packing in the outermost surface of poly(butene-1) films are presented.


Author(s):  
J. S. Maa ◽  
Thos. E. Hutchinson

The growth of Ag films deposited on various substrate materials such as MoS2, mica, graphite, and MgO has been investigated extensively using the in situ electron microscopy technique. The three stages of film growth, namely, the nucleation, growth of islands followed by liquid-like coalescence have been observed in both the vacuum vapor deposited and ion beam sputtered thin films. The mechanisms of nucleation and growth of silver films formed by ion beam sputtering on the (111) plane of silicon comprise the subject of this paper. A novel mode of epitaxial growth is observed to that seen previously.The experimental arrangement for the present study is the same as previous experiments, and the preparation procedure for obtaining thin silicon substrate is presented in a separate paper.


Author(s):  
Linda C. Sawyer

Recent liquid crystalline polymer (LCP) research has sought to define structure-property relationships of these complex new materials. The two major types of LCPs, thermotropic and lyotropic LCPs, both exhibit effects of process history on the microstructure frozen into the solid state. The high mechanical anisotropy of the molecules favors formation of complex structures. Microscopy has been used to develop an understanding of these microstructures and to describe them in a fundamental structural model. Preparation methods used include microtomy, etching, fracture and sonication for study by optical and electron microscopy techniques, which have been described for polymers. The model accounts for the macrostructures and microstructures observed in highly oriented fibers and films.Rod-like liquid crystalline polymers produce oriented materials because they have extended chain structures in the solid state. These polymers have found application as high modulus fibers and films with unique properties due to the formation of ordered solutions (lyotropic) or melts (thermotropic) which transform easily into highly oriented, extended chain structures in the solid state.


Author(s):  
R.T. Chen ◽  
M.G. Jamieson ◽  
R. Callahan

“Row lamellar” structures have previously been observed when highly crystalline polymers are melt-extruded and recrystallized under high stress. With annealing to perfect the stacked lamellar superstructure and subsequent stretching in the machine (extrusion) direction, slit-like micropores form between the stacked lamellae. This process has been adopted to produce polymeric membranes on a commercial scale with controlled microporous structures. In order to produce the desired pore morphology, row lamellar structures must be established in the membrane precursors, i.e., as-extruded and annealed polymer films or hollow fibers. Due to the lack of pronounced surface topography, the lamellar structures have typically been investigated by replica-TEM, an indirect and time consuming procedure. Recently, with the availability of high resolution imaging techniques such as scanning tunneling microscopy (STM) and field emission scanning electron microscopy (FESEM), the microporous structures on the membrane surface as well as lamellar structures in the precursors can be directly examined.The materials investigated are Celgard® polyethylene (PE) flat sheet membranes and their film precursors, both as-extruded and annealed, made at different extrusion rates (E.R.).


Author(s):  
Mark Denker ◽  
Jennifer Wall ◽  
Mark Ray ◽  
Richard Linton

Reactive ion beams such as O2+ and Cs+ are used in Secondary Ion Mass Spectrometry (SIMS) to analyze solids for trace impurities. Primary beam properties such as energy, dose, and incidence angle can be systematically varied to optimize depth resolution versus sensitivity tradeoffs for a given SIMS depth profiling application. However, it is generally observed that the sputtering process causes surface roughening, typically represented by nanometer-sized features such as cones, pits, pyramids, and ripples. A roughened surface will degrade the depth resolution of the SIMS data. The purpose of this study is to examine the relationship of the roughness of the surface to the primary ion beam energy, dose, and incidence angle. AFM offers the ability to quantitatively probe this surface roughness. For the initial investigations, the sample chosen was <100> silicon, and the ion beam was O2+.Work to date by other researchers typically employed Scanning Tunneling Microscopy (STM) to probe the surface topography.


Author(s):  
A.E.M. De Veirman ◽  
F.J.G. Hakkens ◽  
W.M.J. Coene ◽  
F.J.A. den Broeder

There is currently great interest in magnetic multilayer (ML) thin films (see e.g.), because they display some interesting magnetic properties. Co/Pd and Co/Au ML systems exhibit perpendicular magnetic anisotropy below certain Co layer thicknesses, which makes them candidates for applications in the field of magneto-optical recording. It has been found that the magnetic anisotropy of a particular system strongly depends on the preparation method (vapour deposition, sputtering, ion beam sputtering) as well as on the substrate, underlayer and deposition temperature. In order to get a better understanding of the correlation between microstructure and properties a thorough cross-sectional transmission electron microscopy (XTEM) study of vapour deposited Co/Pd and Co/Au (111) MLs was undertaken (for more detailed results see ref.).The Co/Pd films (with fixed Pd thickness of 2.2 nm) were deposited on mica substrates at substrate temperatures Ts of 20°C and 200°C, after prior deposition of a 100 nm Pd underlayer at 450°C.


Author(s):  
P.E. Russell ◽  
I.H. Musselman

Scanning tunneling microscopy (STM) has evolved rapidly in the past few years. Major developments have occurred in instrumentation, theory, and in a wide range of applications. In this paper, an overview of the application of STM and related techniques to polymers will be given, followed by a discussion of current research issues and prospects for future developments. The application of STM to polymers can be conveniently divided into the following subject areas: atomic scale imaging of uncoated polymer structures; topographic imaging and metrology of man-made polymer structures; and modification of polymer structures. Since many polymers are poor electrical conductors and hence unsuitable for use as a tunneling electrode, the related atomic force microscopy (AFM) technique which is capable of imaging both conductors and insulators has also been applied to polymers.The STM is well known for its high resolution capabilities in the x, y and z axes (Å in x andy and sub-Å in z). In addition to high resolution capabilities, the STM technique provides true three dimensional information in the constant current mode. In this mode, the STM tip is held at a fixed tunneling current (and a fixed bias voltage) and hence a fixed height above the sample surface while scanning across the sample surface.


Sign in / Sign up

Export Citation Format

Share Document