Crystal structure of hyoscyamine sulfate monohydrate, (C17H24NO3)2(SO4)(H2O)

2020 ◽  
Vol 35 (4) ◽  
pp. 286-292
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of hyoscyamine sulfate monohydrate has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Hyoscyamine sulfate monohydrate crystallizes in space group P21 (#4) with a = 6.60196(2), b = 12.95496(3), c = 20.93090(8) Å, β = 94.8839(2)°, V = 1783.680(5) Å3, and Z = 2. Despite the traditional description as a dihydrate, hyoscyamine sulfate crystallizes as a monohydrate. The two independent hyoscyamine cations have different conformations, which have similar energies. One of the cations is close to the minimum-energy conformation. Each of the protonated nitrogen atoms in the cations acts as a donor to the sulfate anion. The hydroxyl group of one cation acts as a donor to the sulfate anion, while the hydroxyl group of the other cation acts as a donor to the water molecule. The water molecule acts as a donor to two different sulfate anions. The cations and anions are linked by complex chains of hydrogen bonds along the a-axis. The powder pattern has been submitted for inclusion in the Powder Diffraction File™ (PDF®).

2019 ◽  
Vol 34 (4) ◽  
pp. 368-373 ◽  
Author(s):  
Zachary R. Butler ◽  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of prednicarbate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Prednicarbate crystallizes in space group P212121 (#19) with a = 7.69990(3), b = 10.75725(3), c = 31.36008(11) Å, V = 2597.55(1) Å3, and Z = 4. In the crystal structure the long axis of the steroid ring system lies roughly parallel to the c-axis. The oxygenated side chains are orientated roughly perpendicular to the steroid ring system and are adjacent to each other, parallel to the ab-plane. The only traditional hydrogen bond donor in the prednicarbate molecule is the hydroxyl group O32–H33, but this does not participate in an O–H···O hydrogen bond. The nearest oxygen atoms to O32 are symmetry-related O32 at 4.495 Å, precluding the expected O–H···O hydrogen bond. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™.


2016 ◽  
Vol 31 (2) ◽  
pp. 142-148
Author(s):  
James A. Kaduk ◽  
Kai Zhong ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of choline fenofibrate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Choline fenofibrate crystallizes in space group Pbca (#61) with a = 12.341 03(2), b = 28.568 70(6), c = 12.025 62(2) Å, V = 4239.84(1) Å3, and Z = 8. The hydroxyl group of the choline anion makes a strong hydrogen bond to the ionized carboxylate group of the fenofibrate anion. Together with C–H···O hydrogen bonds, these link the cations and anions into layers parallel to the ac-plane. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™.


2015 ◽  
Vol 30 (3) ◽  
pp. 263-269
Author(s):  
James A. Kaduk ◽  
Kai Zhong ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of the potassium salt of raltegravir has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Raltegravir potassium crystallizes in space group P21/c (#14) with a = 15.610 59(9), b = 8.148 19(3), c = 16.125 97(6) Å, β = 94.1848(5)°, V = 2045.72(1) Å3, and Z = 4. The most prominent feature of the crystal structure is the chains of edge-sharing 7-coordinate KO5N2 parallel to the b-axis. The crystal structure can be described as having K-containing layers in the bc-plane, with double layers of CH4F halfway between them. The raltegravir anion is not in the minimum-energy conformation, suggesting that coordination to the K and hydrogen bonds play a significant role in the solid-state structure. The powder pattern is included in the Powder Diffraction File™ as entry 00-064-1499.


2016 ◽  
Vol 31 (2) ◽  
pp. 135-141 ◽  
Author(s):  
James A. Kaduk ◽  
Kai Zhong ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of paliperidone has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Paliperidone crystallizes in space group P21/n (# 14) with a = 14.151 58(6), b = 21.537 80(9), c = 6.913 26(2) Å, β = 92.3176(2)°, V = 2105.396(13) Å3, and Z = 4. The unit-cell volume at 295 K is 1.5% larger than at 200 K, but the expansion is anisotropic; the b-axis is nearly constant at the two temperatures, while the a- and c-axes expand by 0.71 and 0.87%, respectively. There is only one significant hydrogen (H)-bond in the crystal structure. This H-bond is between the hydroxyl group O31–H58 and the ketone oxygen O25. The result is a chain along the c-axis with graph set C1,1(7). In addition to this H-bond, the molecular packing is dominated by van der Waals attractions. The powder pattern is included in the Powder Diffraction File™ as entry 00-064-1497.


2021 ◽  
pp. 1-10
Author(s):  
James A. Kaduk ◽  
Allison Tanis ◽  
Alyssa Tovar ◽  
Nicholas C. Boaz ◽  
Amy M. Gindhart ◽  
...  

The crystal structure of ivermectin hemihydrate ethanolate has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Ivermectin hemihydrate ethanolate crystallizes in space group C2 (#5) with a = 40.9374(10), b = 9.26951(6), c = 14.9488(2) Å, β = 73.047(1)°, V = 5426.12(8) Å3, and Z = 4. The structure consists of layers of ivermectin molecules parallel to the bc-plane. The water and ethanol molecules reside in small voids in the structure. The water molecule, the ethanol molecule, and hydroxyl groups act as donors in O–H⋯O hydrogen bonds. Several C–H⋯O hydrogen bonds were detected. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™.


2016 ◽  
Vol 31 (4) ◽  
pp. 274-278 ◽  
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of norgestimate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Norgestimate crystallizes in space group P212121 (#19) with a = 11.523 67(9), b = 16.130 72(20), c = 22.247 93(20) Å, V = 4135.56(7) Å3, and Z = 8. There are two independent molecules in the asymmetric unit, with opposite conformations of the acetate groups. Molecule 2 is 7.3 kcal mole−1 lower in energy than molecule 1, and is in the minimum energy conformation. The hydroxyimine groups form O–H⋯O hydrogen bonds to the acetate carbonyl groups, resulting in two separate C(15) chains along the b-axis. The powder pattern is included in the Powder Diffraction File™ as entry 00-064-1503.


2015 ◽  
Vol 30 (3) ◽  
pp. 192-198
Author(s):  
James A. Kaduk ◽  
Kai Zhong ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of ziprasidone hydrochloride monohydrate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Ziprasidone hydrochloride monohydrate crystallizes in space group P-1 (#2) with a = 7.250 10(3), b = 10.986 66(8), c = 14.071 87(14) Å, α = 83.4310(4), β = 80.5931(6), γ = 87.1437(6)°, V = 1098.00(1) Å3, and Z = 2. The ziprasidone conformation in the solid state is very close to the minimum energy conformation. The positively-charged nitrogen in the ziprasidone makes a strong hydrogen bond with the chloride anion. The water molecule makes two weaker bonds to the chloride, and acts as an acceptor in an N–H⋯O hydrogen bond. The powder pattern is included in the Powder Diffraction File™ as entry 00-064-1492.


2019 ◽  
Vol 34 (1) ◽  
pp. 50-58
Author(s):  
James A. Kaduk ◽  
Nicholas C. Boaz ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of oxybutynin hydrochloride hemihydrate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Oxybutynin hydrochloride hemihydrate crystallizes in space group I2/a (#15) with a = 14.57266(8), b = 8.18550(6), c = 37.16842(26) Å, β = 91.8708(4)°, V = 4421.25(7) Å3, and Z = 8. The compound exhibits X-ray-induced photoreduction of the triple bond. Prominent in the layered crystal structure is the N–H⋅⋅⋅Cl hydrogen bond between the cation and anion, as well as O–H⋅⋅⋅Cl hydrogen bonds from the water molecule and hydroxyl group of the oxybutynin cation. C–H⋅⋅⋅Cl hydrogen bonds also contribute to the crystal energy, and help determine the conformation of the cation. The powder pattern is included in the Powder Diffraction File™ as entry 00-068-1305.


2018 ◽  
Vol 34 (1) ◽  
pp. 59-65
Author(s):  
Austin M. Wheatley ◽  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of minocycline hydrochloride dihydrate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Minocycline hydrochloride dihydrate crystallizes in space groupP212121(#19) witha= 7.40772(1),b= 14.44924(3),c= 22.33329(4) Å,V= 2390.465(12) Å3, andZ= 4. The minocycline cation is a zwitterion: both dimethylamino groups are protonated and one hydroxyl group is ionized. A potential ambiguity in the orientation of the amide group was resolved by considering Rietveld refinement residuals and displacement coefficients, as well as DFT energies. The crystal structure is dominated by hydrogen bonds. Both water molecules and a hydroxyl group act as donors to the chloride anion. Both protonated dimethyl amine groups act as donors to the ionized hydroxyl group. Several intramolecular O–H···O hydrogen groups help determine the conformation of the cation. The powder pattern is included in the Powder Diffraction File™ as entry 00-066-1606.


2018 ◽  
Vol 33 (4) ◽  
pp. 298-302
Author(s):  
Austin M. Wheatley ◽  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of bretylium tosylate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Bretylium tosylate crystallizes in space group C2/c (#15) with a = 32.6238(4), b = 12.40353(14), c = 9.93864(12) Å, β = 101.4676(10), V = 3941.39(5) Å3, and Z = 8. The sample exhibited visible decomposition in the X-ray beam. The unusual displacement ellipsoid of the Br atom probably indicates that the decomposition in the beam involves the Br atom. The crystal structure can be viewed as layered parallel to the bc plane. The layers are double, the center consisting of the cation/anion polar interactions and the outer surface of the double layers consists of hydrocarbon interactions. In the absence of normal hydrogen bond donors, the only hydrogen bonds in the bretylium tosylate structure are C–H…O hydrogen bonds. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™.


Sign in / Sign up

Export Citation Format

Share Document