Segmentation of design protocol using EEG

Author(s):  
Philon Nguyen ◽  
Thanh An Nguyen ◽  
Yong Zeng

AbstractDesign protocol data analysis methods form a well-known set of techniques used by design researchers to further understand the conceptual design process. Verbal protocols are a popular technique used to analyze design activities. However, verbal protocols are known to have some limitations. A recurring problem in design protocol analysis is to segment and code protocol data into logical and semantic units. This is usually a manual step and little work has been done on fully automated segmentation techniques. Physiological signals such as electroencephalograms (EEG) can provide assistance in solving this problem. Such problems are typical inverse problems that occur in the line of research. A thought process needs to be reconstructed from its output, an EEG signal. We propose an EEG-based method for design protocol coding and segmentation. We provide experimental validation of our methods and compare manual segmentation by domain experts to algorithmic segmentation using EEG. The best performing automated segmentation method (when manual segmentation is the baseline) is found to have an average deviation from manual segmentations of 2 s. Furthermore, EEG-based segmentation can identify cognitive structures that simple observation of design protocols cannot. EEG-based segmentation does not replace complex domain expert segmentation but rather complements it. Techniques such as verbal protocols are known to fail in some circumstances. EEG-based segmentation has the added feature that it is fully automated and can be readily integrated in engineering systems and subsystems. It is effectively a window into the mind.

2021 ◽  
Vol 10 (2) ◽  
pp. 205846012098809
Author(s):  
Byeong H Oh ◽  
Hyeong C Moon ◽  
Aryun Kim ◽  
Hyeon J Kim ◽  
Chae J Cheong ◽  
...  

Background The pathology of Parkinson’s disease leads to morphological changes in brain structure. Currently, the progressive changes in gray matter volume that occur with time and are specific to patients with Parkinson’s disease, compared to healthy controls, remain unclear. High-tesla magnetic resonance imaging might be useful in differentiating neurological disorders by brain cortical changes. Purpose We aimed to investigate patterns in gray matter changes in patients with Parkinson’s disease by using an automated segmentation method with 7-tesla magnetic resonance imaging. Material and Methods High-resolution T1-weighted 7 tesla magnetic resonance imaging volumes of 24 hemispheres were acquired from 12 Parkinson’s disease patients and 12 age- and sex-matched healthy controls with median ages of 64.5 (range, 41–82) years and 60.5 (range, 25–74) years, respectively. Subgroup analysis was performed according to whether axial motor symptoms were present in the Parkinson’s disease patients. Cortical volume, cortical thickness, and subcortical volume were measured using a high-resolution image processing technique based on the Desikan-Killiany-Tourville atlas and an automated segmentation method (FreeSurfer version 6.0). Results After cortical reconstruction, in 7 tesla magnetic resonance imaging volume segmental analysis, compared with the healthy controls, the Parkinson’s disease patients showed global cortical atrophy, mostly in the prefrontal area (rostral middle frontal, superior frontal, inferior parietal lobule, medial orbitofrontal, rostral anterior cingulate area), and subcortical volume atrophy in limbic/paralimbic areas (fusiform, hippocampus, amygdala). Conclusion We first demonstrated that 7 tesla magnetic resonance imaging detects structural abnormalities in Parkinson’s disease patients compared to healthy controls using an automated segmentation method. Compared with the healthy controls, the Parkinson’s disease patients showed global prefrontal cortical atrophy and hippocampal area atrophy.


2020 ◽  
Author(s):  
Javier Quilis-Sancho ◽  
Miguel A. Fernandez-Blazquez ◽  
J Gomez-Ramirez

AbstractThe study of brain volumetry and morphology of the different brain structures can determine the diagnosis of an existing disease, quantify its prognosis or even help to identify an early detection of dementia. Manual segmentation is an extremely time consuming task and automated methods are thus, gaining importance as clinical tool for diagnosis. In the last few years, AI-based segmentation has delivered, in some cases, superior results than manual segmentation, in both time and accuracy. In this study we aim at performing a comparative analysis of automated brain segmentation. In order to test the performance of automated segmentation methods, the two most commonly used software libraries for brain segmentation Freesurfer and FSL, were put to work in each of the 4028 MRIs available in the study. We find a lack of linear correlation between the segmentation results obtained from Freesurfer and FSL. On the other hand. Freesurfer volume estimates of subcortical brain structures tends to be larger than FSL estimates of same areas. The study builds on an uniquely large, longitudinal dataset of over 4,000 MRIs, all performed with identical equipment to help researchers understand what to expect from fully automated segmentation procedures.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Clyde J. Belasso ◽  
Bahareh Behboodi ◽  
Habib Benali ◽  
Mathieu Boily ◽  
Hassan Rivaz ◽  
...  

Abstract Background Among the paraspinal muscles, the structure and function of the lumbar multifidus (LM) has become of great interest to researchers and clinicians involved in lower back pain and muscle rehabilitation. Ultrasound (US) imaging of the LM muscle is a useful clinical tool which can be used in the assessment of muscle morphology and function. US is widely used due to its portability, cost-effectiveness, and ease-of-use. In order to assess muscle function, quantitative information of the LM must be extracted from the US image by means of manual segmentation. However, manual segmentation requires a higher level of training and experience and is characterized by a level of difficulty and subjectivity associated with image interpretation. Thus, the development of automated segmentation methods is warranted and would strongly benefit clinicians and researchers. The aim of this study is to provide a database which will contribute to the development of automated segmentation algorithms of the LM. Construction and content This database provides the US ground truth of the left and right LM muscles at the L5 level (in prone and standing positions) of 109 young athletic adults involved in Concordia University’s varsity teams. The LUMINOUS database contains the US images with their corresponding manually segmented binary masks, serving as the ground truth. The purpose of the database is to enable development and validation of deep learning algorithms used for automatic segmentation tasks related to the assessment of the LM cross-sectional area (CSA) and echo intensity (EI). The LUMINOUS database is publicly available at http://data.sonography.ai. Conclusion The development of automated segmentation algorithms based on this database will promote the standardization of LM measurements and facilitate comparison among studies. Moreover, it can accelerate the clinical implementation of quantitative muscle assessment in clinical and research settings.


2020 ◽  
Vol 191 ◽  
pp. 105386 ◽  
Author(s):  
Amélie Poilliot ◽  
Murray Tannock ◽  
Ming Zhang ◽  
Johann Zwirner ◽  
Niels Hammer

Sign in / Sign up

Export Citation Format

Share Document