Experiences with intracytoplasmic sperm injection

1995 ◽  
Vol 4 (2) ◽  
pp. 75-86 ◽  
Author(s):  
Susan E Lanzendorf

Mammalian fertilization, whether it takes place within the female reproductive tract or within a laboratory dish, is comprised of many processes which must follow a specific sequence. The spermatozoon must bind to and pass through the zona pellucida, fuse with the oolemma and become incorporated into the cytoplasm of the oocyte. Fusion of the two gametes triggers oocyte activation, resulting in exocytosis of the cortical granules and completion of the second meiotic division of the oocyte. A block in one or more of these processes, due either to abnormalities in the spermatozoon or oocyte, may result in fertilization failure.

Reproduction ◽  
2017 ◽  
Vol 154 (6) ◽  
pp. F71-F77 ◽  
Author(s):  
Zev Rosenwaks ◽  
Nigel Pereira

Intracytoplasmic sperm injection (ICSI) has often been heralded as a ground-breaking technique that has transformed the treatment of couples with infertility. By injecting a single spermatozoon into the cytoplasm of the oocyte, ICSI bypasses the zona pellucida and increases the chances of fertilization and subsequent embryo development, independent of semen parameters. Ever since the first live births using ICSI were reported in 1992, ICSI has become the mainstay of treating male factor infertility as well as overcoming fertilization failure associated with conventional in vitro insemination. Today, ICSI is utilized in nearly 66% of all assisted reproductive treatments worldwide and has resulted in the birth of millions of babies. The primary goal of this review is to provide historical perspectives about the pioneering of ICSI. We begin by highlighting the scientific work of early investigators who elucidated the mechanisms central to mammalian fertilization. Furthermore, we briefly discuss how these findings contributed to the development of IVF for the treatment of infertility. We then emphasize the shortcomings of IVF in treating severe forms of male factor infertility and enumerate the micromanipulation techniques that were developed to circumvent these shortcomings. Finally, we indicate how the inadequacies of these micromanipulation techniques lead to the inception, application and popularity of ICSI.


2006 ◽  
Vol 18 (2) ◽  
pp. 222 ◽  
Author(s):  
D. B. B. P. Paris

Due to the variability in vaginal anatomy among marsupials, the female reproductive tract must be examined for each species prior to developing artificial insemination using catheters. The grey short-tailed opossum (Monodelphis domestica) is a nonseasonal, polyovular didelphid and, as in all marsupials studied, has two completely separate uteri each opening into an anterior vaginal expansion through two distinct cervices. In the opossum, however, a septum divides the anterior vaginal expansion into two vaginal culs-de-sac, two lateral vaginae connect the anterior vaginal culs-de-sac to the urogenital sinus and opening, and the median vagina is a transient pseudo-vaginal birth canal. In this study we examined the site for insertion of artificial insemination catheters and the distribution of fluids inseminated within the vaginal complex of the opossum. Reproductive tracts were examined from four similarly sized unpaired adult one- to two-year-old females. A 2.3 mm diameter silicon balloon HSG catheter or a 0.8 mm diameter malleable obturator (Cook Australia, Brisbane, Australia) was introduced at the urogenital opening and navigated through the urogenital sinus, lateral vaginae, and cervices and the depth of insertion noted. Second, 0.15 mL of 1% Methylene blue dye (Sigma, Poole, UK) was injected by HSG catheter into the anterior urogenital sinus and the extent of dye distribution in the tract noted. In all tracts, the HSG catheter easily reached the anterior urogenital sinus (1.5 ± 0.3 cm; mean ± SEM), but would not pass into the lateral vaginae or bladder. The malleable obturator easily passed into the bladder or through each lateral vagina into the anterior vaginal cul-de-sac (2.9 ± 0.2 cm). The obturator also passed through the each cervix into the opening of the uterus (3.1 ± 0.3 cm), but the tract required manipulation to navigate it through the convoluted lateral vaginae. Dye injected into the anterior urogenital sinus was distributed throughout the lateral vaginae and anterior vaginal culs-de-sac. No dye was detected in the bladder or had passed through the cervices into the uteri. In two of three tracts studied, dye was observed to migrate between each anterior vaginal cul-de-sac across the posterior end of the median septum that divides them. In conclusion, the use of larger diameter catheters (∼2.3 mm) is recommended for unguided insemination of the anterior urogenital sinus in this species. Catheters less than 1 mm diameter require ultrasonic or endoscopic guidance to reach the uteri in order to avoid insemination into the bladder. Dye studies indicate that the median septum may not completely separate the cervices in the opossum, suggesting that inseminates delivered to one side of the tract may be able to fertilize oocytes on the contralateral side. In addition, the cervices appear to restrict inseminates from entering the uteri. Spermatozoa may thus be required to pass through the cervices under their own motility. This work was funded by the European Commission under a Marie Curie Incoming International Fellowship. Catheters were provided by Cook Australia.


1995 ◽  
Vol 7 (2) ◽  
pp. 197 ◽  
Author(s):  
SP Flaherty ◽  
D Payne ◽  
NJ Swann ◽  
CD Matthews

The assessment of fertilization is an important part of intracytoplasmic sperm injection (ICSI) and oocytes are routinely examined about 17 h after injection using Nomarski differential interference contrast optics. However, it is not possible to conclusively determine the aetiology of fertilization anomalies in this manner, so cytological studies were undertaken to determine the causes of failed and abnormal fertilization after ICSI. Oocytes which exhibited no evidence of fertilization, one pronucleus (PN) or 3 PN were fixed in glutaraldehyde, stained with Hoechst 33342 and examined by fluorescence microscopy to identify PN, metaphase chromosomes, sperm heads and polar bodies. A total of 428 unfertilized oocytes were examined from 170 ICSI cycles. Overall, 82% of these unfertilized oocytes were still at metaphase II (non-activated) while the remaining 18% were activated and had 1 PN and two polar bodies. The majority (71%) of the metaphase II oocytes contained a swollen sperm head, which indicates that the spermatozoon was correctly injected but the oocyte did not activate and complete its second meiotic division. The swollen sperm head was located among the metaphase chromosomes in 4.3% of these oocytes, while in some cases (6.6%), the sperm chromosomes had undergone premature chromosome condensation (PCC). Other aetiologies of failed fertilization in these metaphase oocytes were ejection of the spermatozoon from the oocyte (19%) and complete failure of sperm head decondensation (10%). A similar pattern of anomalies was found in 1 PN oocytes, although the ratios were different (swollen sperm head, 51%; ejection of the spermatozoon, 19%; undecondensed sperm head, 30%). Seventy abnormally fertilized oocytes were also examined, of which 63 had 3 PN and a single polar body, indicating that the unextruded second polar body developed into the third PN. In conclusion, the present study demonstrates that the principal cause of fertilization failure after ICSI is failure of oocyte activation and not ejection of the spermatozoon from the oocyte. It is also apparent that further studies are needed to elucidate the mechanisms that control oocyte activation and sperm head decondensation in injected oocytes.


Author(s):  
Meng Wang ◽  
Lixia Zhu ◽  
Chang Liu ◽  
Hui He ◽  
Cheng Wang ◽  
...  

Total fertilization failure (TFF) occurs in 1–3% of total intracytoplasmic sperm injection (ICSI) cycles and can reoccur in subsequent cycles. Despite the high success rate with the application of assisted oocyte activation (AOA), there is still a small number of couples who cannot obtain fertilized eggs after conventional calcium (Ca2+) ionophores-based ICSI-AOA. Six couples experiencing repeated TFF or low fertilization (<10%) after ICSI and conventional ICSI-AOA were enrolled in this study. Compared with the regular ICSI group and the conventional ICSI-AOA group, the new AOA method, a combination of cycloheximide (CHX) and ionomycin, can significantly increase the fertilization rate from less than 10 up to approximately 50% in most cases. The normal distribution of sperm-related oocyte activation factor phospholipase C zeta (PLCζ1) in the sperms of the cases indicated the absence of an aberrant Ca2+ signaling activation. The results of the whole-embryo aneuploidies analysis indicated that oocytes receiving the novel AOA treatment had the potential to develop into blastocysts with normal karyotypes. Our data demonstrated that CHX combined with ionomycin was able to effectively improve the fertilization rate in the majority of patients suffering from TFF. This novel AOA method had a potential therapeutic effect on those couples experiencing TFF, even after conventional AOA, which may surmount the severe fertilization deficiencies in patients with a repeated low fertilization or TFF.


Author(s):  
Mai M. Said ◽  
Ramesh K. Nayak ◽  
Randall E. McCoy

Burgos and Wislocki described changes in the mucosa of the guinea pig uterus, cervix and vagina during the estrous cycle investigated by transmission electron microscopy. More recently, Moghissi and Reame reported the effects of progestational agents on the human female reproductive tract. They found drooping and shortening of cilia in norgestrel and norethindrone- treated endometria. To the best of our knowledge, no studies concerning the effects of mestranol and norethindrone given concurrently on the three-dimensional surface features on the uterine mucosa of the guinea pig have been reported. The purpose of this study was to determine the effect of mestranol and norethindrone on surface ultrastructure of guinea pig uterus by SEM.Seventy eight animals were used in this study. They were allocated into two groups. Group 1 (20 animals) was injected intramuscularly 0.1 ml vegetable oil and served as controls.


Author(s):  
R.P. Apkarian ◽  
J.S. Sanfilippo

The synthetic androgen danazol, is an isoxazol derivative of ethisterone. It is utilized in the treatment of endometriosis, fibrocystic breast disease, and has a potential use as a contraceptive. A study was designed to evaluate the ultrastructural changes associated with danazol therapy in a rat model. The preliminary investigation of the distal segment of the rat uterine horn was undertaken as part of a larger study intended to elucidate the effects of danazol on the female reproductive tract.Cross-sections (2-3 mm in length) of the distal segment of the uterine horn from sixteen Sprague-Dawley rats were prepared for SEM. Ten rats in estrus served as controls and six danazol treated rats were noted to have alterations of the estrus cycle i.e. a lag in cycle phase or noncycling patterns. Specimens were fixed in 3% glutaraldehyde in 0.05M phosphate buffer containing CaCl2 at pH 7.0-7.4 and chilled to 4°C. After a brief wash in distilled water, specimens were passed through a graded series of ethanol, critical point dryed in CO2 from absolute ethanol, and coated with 6nm Au. Observations were made with an IS1-40 SEM operated at 15kV.


Author(s):  
Lawrence M. Roth

The female reproductive tract may be the site of a wide variety of benign and malignant tumors, as well as non-neoplastic tumor-like conditions, most of which can be diagnosed by light microscopic examination including special stains and more recently immunoperoxidase techniques. Nevertheless there are situations where ultrastructural examination can contribute substantially to an accurate and specific diagnosis. It is my opinion that electron microscopy can be of greatest benefit and is most cost effective when applied in conjunction with other methodologies. Thus, I have developed an approach which has proved useful for me and may have benefit for others. In cases where it is deemed of potential value, glutaraldehyde-fixed material is obtained at the time of frozen section or otherwise at operation. Coordination with the gynecologic oncologist is required in the latter situation. This material is processed and blocked and is available if a future need arises.


Sign in / Sign up

Export Citation Format

Share Document