The Structure and Properties of MoSi2 Thin Film in Mos Process

Author(s):  
C.K. Wu ◽  
P. Chang ◽  
N. Godinho

Recently, the use of refractory metal silicides as low resistivity, high temperature and high oxidation resistance gate materials in large scale integrated circuits (LSI) has become an important approach in advanced MOS process development (1). This research is a systematic study on the structure and properties of molybdenum silicide thin film and its applicability to high performance LSI fabrication.

1997 ◽  
Vol 36 (Part 1, No. 5A) ◽  
pp. 2565-2570 ◽  
Author(s):  
Hirofumi Shimizu ◽  
Yuji Sugino ◽  
Norio Suzuki ◽  
Shogo Kiyota ◽  
Koichi Nagasawa ◽  
...  

2009 ◽  
Vol 74 ◽  
pp. 197-200
Author(s):  
Zhuang Jian Liu ◽  
Yong Wei Zhang ◽  
Ji Zhou Song ◽  
Dae Hyeong Kim ◽  
Yong Gang Huang ◽  
...  

This paper presents numerical simulation strategies for stretchable silicon integrated circuits that use stiff thin film on elastomeric substrates. Detailed numerical simulation studies reveal the key underlying aspects of these systems. The results indicate, as an example, optimized mechanics and materials for circuits that exhibit maximum principal strains less than 0.2% even for applied strains of up to ~90%. Simple circuits, including CMOS inverters provide an example that validates these designs. The results suggest practical routes to high performance electronics with linear elastic responses to large strain deformations, suitable for diverse applications that are not readily addressed with conventional wafer-based technologies.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2145 ◽  
Author(s):  
Te Jui Yen ◽  
Albert Chin ◽  
Vladimir Gritsenko

Metal-oxide thin-film transistors (TFTs) have been implanted for a display panel, but further mobility improvement is required for future applications. In this study, excellent performance was observed for top-gate coplanar binary SnO2 TFTs, with a high field-effect mobility (μFE) of 136 cm2/Vs, a large on-current/off-current (ION/IOFF) of 1.5 × 108, and steep subthreshold slopes of 108 mV/dec. Here, μFE represents the maximum among the top-gate TFTs made on an amorphous SiO2 substrate, with a maximum process temperature of ≤ 400 °C. In contrast to a bottom-gate device, a top-gate device is the standard structure for monolithic integrated circuits (ICs). Such a superb device integrity was achieved by using an ultra-thin SnO2 channel layer of 4.5 nm and an HfO2 gate dielectric with a 3 nm SiO2 interfacial layer between the SnO2 and HfO2. The inserted SiO2 layer is crucial for decreasing the charged defect scattering in the HfO2 and HfO2/SnO2 interfaces to increase the mobility. Such high μFE, large ION, and low IOFF top-gate SnO2 devices with a coplanar structure are important for display, dynamic random-access memory, and monolithic three-dimensional ICs.


2012 ◽  
Vol 1437 ◽  
Author(s):  
Gunnar B. Malm ◽  
Mohammadreza Kolahdouz ◽  
Fredrik Forsberg ◽  
Niclas Roxhed ◽  
Frank Niklaus

ABSTRACTSemiconductor-based thermistors are very attractive sensor materials for uncooled thermal infrared (IR) bolometers. Very large scale heterogeneous integration of MEMS is an emerging technology that allows the integration of epitaxially grown, high-performance IR bolometer thermistor materials with pre-processed CMOS-based integrated circuits for the sensor read-out. Thermistor materials based on alternating silicon (Si) and silicon-germanium (SiGe) epitaxial layers have been demonstrated and their performance is continuously increasing. Compared to a single layer of silicon or SiGe, the temperature coefficient of resistance (TCR) can be strongly enhanced to about 3 %/K, by using thin alternating layers. In this paper we report on the optimization of alternating Si/SiGe layers by advanced physically based simulations, including quantum mechanical corrections. Our simulation framework provides reliable predictions for a wide range of SiGe layer compositions, including concentration gradients. Finally, our SiGe thermistor layers have been evaluated in terms of low-frequency noise performance, in order to optimize the bolometer detectivity.


2012 ◽  
Vol 1440 ◽  
Author(s):  
Shuang Peng ◽  
Wenjun Du ◽  
Leela Rakesh ◽  
Axel Mellinger ◽  
Tolga Kaya

ABSTRACTWe proposed the use of Copper (Cu) and Zinc (Zn) nanoparticles as the electrodes for thin-film microbatteries in the applications of micro-scale sensors. Compared to the widely used lithium-based batteries, Cu and Zn nanoparticles are less expensive, less prone to oxidation (thus involving simpler fabrication steps) and flammability, safe to use, and only requires very simple fabrication processes.Even though the voltage output is inherently smaller (∼1V) than conventional lithium-based batteries, it is sufficient for low-voltage Integrated Circuits (IC) technologies such as 130 nm and 90 nm channel length transistor processes.Commercial paper will be used as the separator to demonstrate the battery capacity. Paper that acts as the separator is slurry-casted with nanoparticles (30-40 nm in size) on both sides. The thickness of the metal nanoparticles-coated thin films and the paper separator are 1 μm and 100 μm, respectively.The electrodes were developed to achieve high conductivity (lower than 1 (Ω·cm)-1) with smooth surface, good adhesion, and flexibility. The metal nanoparticles will be formulated to slurry solutions for screen printing or ink-jet printing for the battery fabrication. For fabrication purposes, the slurries viscosity is approximately in the range of 10-12 cPs at the operating temperature, a surface tension between 28-33 dynes/cm. During the fabrication process including printing/coating and sintering, reductive environment is required to minimize the oxidation. AFM (Atomic Force Microscopy) and EDS (Energy Dispersive Spectroscopy) results will be employed to demonstrate the surface morphology as well as the percentages of metal oxides. Batteries will be tested with and without an ionic liquid for comparison. Humidity effects on the battery performance will also be discussed.Different geometries that are designed to make the batteries with higher voltage or charge will be proposed. Characterization results will include the open-circuit voltage, dielectric property, charging and discharging curve, capacitance and capacity, AFM of the surface test, EDS of the electrodes and the SEM (Scanning Electron microscopy) of the particles.Ourresearch suggest that conductive paper can be scalable and could make high-performance energy storage and conversion devices at low cost and would bring new opportunities for advanced applications.


Sign in / Sign up

Export Citation Format

Share Document