Comparison of Anatomy and Composition Distribution between Normal and Compression Wood of Pinus Bungeana Zucc. Revealed by Microscopic Imaging Techniques

2012 ◽  
Vol 18 (6) ◽  
pp. 1459-1466 ◽  
Author(s):  
Zhiheng Zhang ◽  
Jianfeng Ma ◽  
Zhe Ji ◽  
Feng Xu

AbstractThe anatomy and topochemistry in normal and compression wood tracheid cell wall of Pinus bungeana Zucc. were investigated by fluorescence microscopy and confocal Raman microscopy. Using fluorescence microscopy, the severity of compression wood was classed as a mild type for the reason that it did not contain all compression wood features. Chemical imaging by confocal Raman microscopy was used for analyzing the distribution of lignin and cellulose, as well as the functional groups of lignin in tracheid cell walls. By comparison with normal wood, highly lignified outer S2 layer [S2(L)], thicker S1 layer, and obviously reduced lignification in the middle lamella were characteristic of compression wood. In addition, smaller microfibril angle was observed in the S2(L) region. The distribution of coniferyl alcohol and coniferyl aldehyde in normal and compression wood was enriched in S1 and S2 layers but lack in cell corner and/or S2L regions, which showed an opposite pattern to lignin distribution. Confocal Raman microscopy with high spatial resolution contributes to a further understanding of the differences between normal and compression wood in polymers distribution and molecules orientation in situ.

1999 ◽  
Vol 77 (1) ◽  
pp. 41-50 ◽  
Author(s):  
Lloyd A Donaldson ◽  
Adya P Singh ◽  
Arata Yoshinaga ◽  
Keiji Takabe

Lignin distribution in the tracheid cell wall of mild compression wood in Pinus radiata D. Don was examined by interference microscopy, confocal fluorescence microscopy, and ultraviolet (UV) microscopy. Two anatomically different samples of mild compression wood were compared with a sample of normal wood using quantitative interference microscopy and microdensitometry combined with confocal fluorescence microscopy to estimate the quantitative or semiquantitative lignin distribution in the S2 and S2L regions of the secondary cell wall and of the cell corner middle lamella (CCML). One of these samples was briefly examined by UV microscopy for comparison. Quantitative interference microscopy provided information on lignin concentration in different regions of the cell wall with values of 26, 46, and 57%, respectively, for the S2, S2L, and CCML regions of sample 1 and 20, 29, and 46%, respectively, for the same regions of sample 2. Microdensitometry of confocal fluorescence images provided semiquantitative information on the relative lignin distribution based on lignin autofluorescence. Comparison between the two compression wood samples using autofluorescence gave results that were in partial agreement with interference microscopy with respect to the relative lignification levels in the S2, S2L, and CCML regions. Some improvement was achieved by using calibration values for hemicellulose rather than holocellulose for interference data in the S2L region. Results for UV microscopy performed on sample 1 indicated that the lignification of the CCML region was comparable with that of the S2L region in this sample but with some variation among cells. All three techniques indicated significant variation in lignification levels of the S2L and CCML regions among adjacent cells and a significant reduction in the lignification of the CCML region compared to normal wood.Key words: lignin distribution, interference microscopy; confocal fluorescence microscopy, UV microscopy, mild compression wood, Pinus radiata D. Don.


2006 ◽  
Vol 140 (4) ◽  
pp. 1246-1254 ◽  
Author(s):  
Notburga Gierlinger ◽  
Manfred Schwanninger

Holzforschung ◽  
2003 ◽  
Vol 57 (4) ◽  
pp. 421-426 ◽  
Author(s):  
W. Gindl ◽  
A. A.Teischinger

Summary The strength of larch compression wood specimens in longitudinal shear in the radial plane was determined and compared to normal wood. Fracture surfaces were examined with a scanning electron microscope. Compression wood showed higher shear strength than normal wood. The difference persisted after correction of the strength values for density. Scanning electron microscopy revealed clear differences in the pattern of failure in normal wood compared to compression wood. While transwall and intrawall fracture predominate in normal wood, intercell fracture at the middle lamella occurs in compression wood. An explanation of this change in fracture behaviour is proposed in terms of microfibril angle and lignification of the cell wall.


Sign in / Sign up

Export Citation Format

Share Document