scholarly journals Characterization of Oxide Layers on Stainless Steel Using Auger Electron Spectroscopy (AES), Scanning Electron Microscopy-Focused Ion Beam (SEM-FIB) and Transmission Electron Microscopy (TEM)

2020 ◽  
Vol 26 (S2) ◽  
pp. 1566-1566
Author(s):  
Henry Ajo
2012 ◽  
Vol 174-177 ◽  
pp. 508-511
Author(s):  
Lin Lin Yang ◽  
Yong Gang Wang ◽  
Yu Jiang Wang ◽  
Xiao Feng Wang

BiFeO3 polyhedrons had been successfully synthesized via a hydrothermal method. The as-prepared products were characterized by power X-ray diffraction (XRD) pattern, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The possible mechanisms for the formation of BiFeO3 polyhedrons were discussed. Though comparison experiments, it was found that the kind of precursor played a key role on the morphology control of BiFeO3 crystals.


1997 ◽  
Vol 3 (4) ◽  
pp. 381-396
Author(s):  
S. Chandra ◽  
D. Van Gemert

Abstract Interior plaster from the Abbot's Palace of the Abbey of Villers-la-Ville, Brabant Wallon province, Belgium has been investigated. It is done by using chemical analysis, x-ray diffraction analysis, scanning electron microscopy, energy dispersive electron spectroscopy, and transmission electron microscopy. It is found that the rendering was made with lime rich mortar and animal hairs. The sand used was very fine and the hairs were very short. The solid constituents and the hairs were uniformly dispersed, which could have been obtained by the addition of some other natural polymer, containing protein.


2009 ◽  
Vol 15 (S2) ◽  
pp. 368-369 ◽  
Author(s):  
S Duarte ◽  
A Avishai ◽  
A Sadan

Extended abstract of a paper presented at Microscopy and Microanalysis 2009 in Richmond, Virginia, USA, July 26 – July 30, 2009


2013 ◽  
Vol 1549 ◽  
pp. 149-154
Author(s):  
Alena Borisovna Kharissova ◽  
Edgar de Casas Ortiz ◽  
Oxana V. Kharissova ◽  
Ubaldo Ortiz Mendez ◽  
Boris I. Kharisov

ABSTRACTMaterial like PET {polyethylene terephthalate (C10H8O4)n} are usually thrown away present in glasses of refreshments, water bottles between others which are hard to be degraded. However, this material can be recycled and used to acquire nanostructures. During this investigation the objective was to obtain nanoparticles and carbon based nanostructures from the polymer type PET by means of microwave irradiation at the temperature of 260°C at normal pressure and at 600 psi in the presence of acids, ethylene glycol and by means of calcinations. The obtained nanoparticles of ultrananocrystalline diamonds were studied by means of scanning electron microscopy (SEM), high-resolution transmission electron microscopy (TEM), and Raman spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document