Ultrastructure and Morphometric Analysis of Interstitial Cells of Cajal in the Gastric Wall of the Bullfrog (Rana catesbeiana)

2022 ◽  
pp. 1-6
Author(s):  
Yujie Huang ◽  
Meiling Gong ◽  
Xianshu Chen ◽  
Yijie Chen ◽  
Bikai Lu ◽  
...  

Interstitial cells of Cajal (ICC) play a vital role in the gastrointestinal motility. However, information on ICC in lower vertebrates is rare. Here, ICC and ICC-like features of the gastric wall in the bullfrog (Rana catesbeiana) were observed by light microscopy and transmission electron microscopy. The lengths and distances of the ICC/ICC-like features were measured by morphometric analysis. The gastric wall contained mucosa, submucosa, tunica muscularis, and serosa. The gastric glands contained mucous cells and oxynticopeptic cells. The ICC with 1–3 processes were located among smooth muscle cells (SMC) of the tunica muscularis. Moreover, the ICC-like features were observed among oxynticopeptic cells of the mucosa. The processes of ICC established direct contacts with SMC. Also, the gap junctions were observed between the processes of ICC and nerve fiber bundles in the tunica muscularis. The multivesicular bodies, including shedding exosomes, were frequently observed between ICC and SMC. In addition, ICC-like features and their processes were observed in close proximity to oxynticopeptic cells and blood vessels. Our findings illustrated that ICC are present in the gastric tunica muscularis, and ICC-like features were in the mucosal lamina propria of the gastric wall of R. catesbeiana. These histological evidences supported the notion that ICC are implicated in gastric motility.

Author(s):  
Maria-Gabriela Colmenares Aguilar ◽  
Amelia Mazzone ◽  
Seth T Eisenman ◽  
Peter R Strege ◽  
Cheryl E Bernard ◽  
...  

Interstitial cells of Cajal (ICC) generate electrical slow waves, which are required for normal gastrointestinal motility. The mechanisms for generation of normal pacemaking are not fully understood. Normal gastrointestinal contractility and electrical slow wave activity depend on the presence of extracellular HCO3-. Previous transcriptional analysis identified enrichment of mRNA encoding the electrogenic Na+/HCO3- cotransporter (NBCe1) gene (Slc4a4) in pacemaker myenteric ICC in mouse small intestine. We aimed to determine the distribution of NBCe1 protein in ICC of the mouse gastrointestinal tract, and to identify the transcripts of the Slc4a4 gene in mouse and human small intestinal tunica muscularis. We determined the distribution of NBCe1-immunoreactivity (NBCe1-IR) by immunofluorescent labeling in mouse and human tissues. In mice, NBCe1-IR was restricted to Kit-positive myenteric ICC of the stomach and small intestine and sub-muscular ICC of the large intestine; that is the slow wave generating subset of ICC. Other sub-types of ICC were NBCe1-negative. Quantitative real time PCR identified >500 fold enrichment of Slc4a4‑207 and Slc4a4‑208 transcripts (IP3-receptor binding protein released by IP3" (IRBIT) regulated isoforms) in Kit expressing cells isolated from KitcreERT2/+, Rpl22tm1.1Psam/Sj mice and from single GFP-positive ICC from Kittm1Rosay mice. Human jejunal tunica muscularis ICC were also NBCe1-positive and SLC4A4‑201 and SLC4A4‑204 RNAs were >300 fold enriched relative to SLC4A4‑202. In summary, NBCe1 protein expressed in ICC with electrical pacemaker function is encoded by Slc4a4 gene transcripts that generate IRBIT regulated isoforms of NBCe1. In conclusion Na+/HCO3- cotransport through NBCe1 contributes to the generation of pacemaker activity in subsets of ICC.


2004 ◽  
Vol 287 (3) ◽  
pp. G638-G646 ◽  
Author(s):  
Toshihiko Suzuki ◽  
Kyung-Jong Won ◽  
Kazuhide Horiguchi ◽  
Kazuya Kinoshita ◽  
Masatoshi Hori ◽  
...  

Endothelin receptor null rats [ETB(−/−)] are a model for long-segment Hirschsprung’s disease. These animals have significant intestinal distension (megaileum) proximal to a constricted region of the gastrointestinal tract lacking enteric ganglia. Experiments were performed to determine the pathophysiological changes that occur in these animals and to examine the tunica muscularis as a unique, immunologically active compartment. We observed abnormal intestinal flora in ETB(−/−) rats, which included a marked increase in gram-negative aerobes ( Enterobacteriaceae) and anaerobes ( Bacteroidaceae) in the distended region of the small intestine. Histochemical observations showed that neutrophilic infiltration was rarely or not observed, but the number of ED2 positive macrophages was increased in the tunica muscularis. Expression of IL-1β and IL-6 mRNA was also significantly increased, and the level of CD14 (LPS receptors) were increased significantly in the tunica muscularis. Spontaneous phasic contractions were irregular in the distended intestinal regions of ETB(−/−) rats, and this was associated with an increased number of macrophages and damage to interstitial cells of Cajal (ICC) as revealed by using Kit-like immunoreactivity and electron microscopy. These results suggest that ED2-positive resident macrophages may play an important role in the inflammation of tunica muscularis in ETB(−/−) rats. Increased numbers and activation of macrophages may result in damage to ICC networks leading to disordered intestinal rhythmicity in regions of the gut in which myenteric ganglia are intact.


2001 ◽  
Vol 120 (5) ◽  
pp. A201-A201 ◽  
Author(s):  
P STREGE ◽  
A RICH ◽  
Y OU ◽  
S GIBBONS ◽  
M SARR ◽  
...  

2020 ◽  
Vol 20 (3) ◽  
pp. 240-246
Author(s):  
Heng Yang ◽  
Xiao-Ju Jin ◽  
Hong Luo ◽  
Yuan-Hai Li

Objective: This study aims to investigate the effect of morphine with naloxone on intestinal peristalsis and the number of interstitial cells of Cajal (ICC) in colon tissues of rabbits. Methods: Thirty rabbits were randomly divided into five groups (n=6, each group): saline control group (NS group), low concentration of morphine group (L group), medium concentration of morphine group (M group), high concentration of morphine group (H group), medium concentration of morphine and naloxone mixed with antagonist group (NM group). Rabbits in these five groups were administered with an epidural puncture tube and dorsal epidural analgesia pump, and were continuously infused for seven days. Fecal characteristics were observed, and the ink propulsion rate was calculated. The expression level of ICC C-kit protein in colon tissues was tested by western blot. Results: The stool characteristics in the L, M and H groups were more severe than those in the NS and NM groups. Furthermore, the intestinal propulsion rate in the L, M and H groups was lower than that in the NS and NM groups. The C-kit mRNA and protein expression in the colon of rabbits were significantly lower in the L, M and H groups, when compared to the NS and NM groups. Conclusions: Naloxone blocked the mRNA and protein expression of C-kit, and improved intestinal motor function.


Sign in / Sign up

Export Citation Format

Share Document