scholarly journals Semigroups with few endomorphisms

1969 ◽  
Vol 10 (1-2) ◽  
pp. 162-168 ◽  
Author(s):  
Vlastimil Dlab ◽  
B. H. Neumann

Large finite groups have large automorphism groups [4]; infinite groups may, like the infinite cyclic group, have finite automorphism groups, but their endomorphism semigroups are infinite (see Baer [1, p. 530] or [2, p. 68]). We show in this paper that the corresponding propositions for semigroups are false.

1983 ◽  
Vol 26 (3) ◽  
pp. 297-306 ◽  
Author(s):  
K. D. Magill ◽  
P. R. Misra ◽  
U. B. Tewari

In [3] we initiated our study of the automorphism groups of a certain class of near-rings. Specifically, let P be any complex polynomial and let P denote the near-ring of all continuous selfmaps of the complex plane where addition of functions is pointwise and the product fg of two functions f and g in P is defined by fg=f∘P∘g. The near-ring P is referred to as a laminated near-ring with laminating element P. In [3], we characterised those polynomials P(z)=anzn + an−1zn−1 +…+a0 for which Aut P is a finite group. We are able to show that Aut P is finite if and only if Deg P≧3 and ai ≠ 0 for some i ≠ 0, n. In addition, we were able to completely determine those infinite groups which occur as automorphism groups of the near-rings P. There are exactly three of them. One is GL(2) the full linear group of all real 2×2 nonsingular matrices and the other two are subgroups of GL(2). In this paper, we begin our study of the finite automorphism groups of the near-rings P. We get a result which, in contrast to the situation for the infinite automorphism groups, shows that infinitely many finite groups occur as automorphism groups of the near-rings under consideration. In addition to this and other results, we completely determine Aut P when the coefficients of P are real and Deg P = 3 or 4.


1985 ◽  
Vol 28 (1) ◽  
pp. 84-90
Author(s):  
Jay Zimmerman

AbstractThe object of this paper is to exhibit an infinite set of finite semisimple groups H, each of which is the automorphism group of some infinite group, but of no finite group. We begin the construction by choosing a finite simple group S whose outer automorphism group and Schur multiplier possess certain specified properties. The group H is a certain subgroup of Aut S which contains S. For example, most of the PSL's over a non-prime finite field are candidates for S, and in this case, H is generated by all of the inner, diagonal and graph automorphisms of S.


2021 ◽  
pp. 273-282
Author(s):  
Min Hoon Kim ◽  
Patrick Orson ◽  
JungHwan Park ◽  
Arunima Ray

Good groups are defined in terms of whether capped gropes of height 1.5 contain certain types of immersed discs. The disc embedding theorem holds for 4-manifolds with good fundamental group. It is proven that the infinite cyclic group and finite groups are good, and that extensions and colimits of good groups are good. This shows that all elementary amenable groups are good. The proofs use grope height raising and contraction, together with an analysis of how fundamental group elements behave under these operations. A central open problem in the study of topological 4-manifolds is to determine precisely which groups are good.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Naomi Andrew

AbstractWe provide some necessary and some sufficient conditions for the automorphism group of a free product of (freely indecomposable, not infinite cyclic) groups to have Property (FA). The additional sufficient conditions are all met by finite groups, and so this case is fully characterised. Therefore, this paper generalises the work of N. Leder [Serre’s Property FA for automorphism groups of free products, preprint (2018), https://arxiv.org/abs/1810.06287v1]. for finite cyclic groups, as well as resolving the open case of that paper.


1983 ◽  
Vol 26 (1) ◽  
pp. 89-96 ◽  
Author(s):  
James Howie

Let G be a group, and let r = r(t) be an element of the free product G * 〈G〉 of G with the infinite cyclic group generated by t. We say that the equation r(t) = 1 has a solution in G if the identity map on G extends to a homomorphism from G * 〈G〉 to G with r in its kernel. We say that r(t) = 1 has a solution over G if G can be embedded in a group H such that r(t) = 1 has a solution in H. This property is equivalent to the canonical map from G to 〈G, t|r〉 (the quotient of G * 〈G〉 by the normal closure of r) being injective.


Author(s):  
Trevor Evans

The techniques developed in (9) are used here to study the properties of multiplicative systems generated by one element (monogenie systems). The results are of two kinds. First, we obtain fairly complete information about the automorphisms and endo-morphisms of free and finitely related loops. The automorphism group of the free monogenie loop is the infinite cyclic group, each automorphism being obtained by mapping the generator on one of its repeated inverses. A monogenie loop with a finite, non-empty set of relations has only a finite number of endomorphisms. These are obtained by mapping the generator on some of the components, or their repeated inverses, occurring in the relations. We use the same methods to solve the isomorphism problem for monogenie loops, i.e. we give a method for determining whether two finitely related monogenie loops are isomorphic. The decision method consists essentially of constructing all homomorphisms between two given finitely related monogenie loops.


Author(s):  
Costantino Delizia ◽  
Chiara Nicotera

AbstractThe structure of locally soluble periodic groups in which every abelian subgroup is locally cyclic was described over 20 years ago. We complete the aforementioned characterization by dealing with the non-periodic case. We also describe the structure of locally finite groups in which all abelian subgroups are locally cyclic.


Author(s):  
Martsinkevich Anna V.

Let P be the set of all primes, Zn a cyclic group of order n and X wr Zn the regular wreath product of the group X with Zn. A Fitting class F is said to be X-quasinormal (or quasinormal in a class of groups X ) if F ⊆ X, p is a prime, groups G ∈ F and G wr Zp ∈ X, then there exists a natural number m such that G m wr Zp ∈ F. If  X is the class of all soluble groups, then F is normal Fitting class. In this paper we generalize the well-known theorem of Blessenohl and Gaschütz in the theory of normal Fitting classes. It is proved, that the intersection of any set of nontrivial X-quasinormal Fitting classes is a nontrivial X-quasinormal Fitting class. In particular, there exists the smallest nontrivial X-quasinormal Fitting class. We confirm a generalized version of the Lockett conjecture (in particular, the Lockett conjecture) about the structure of a Fitting class for the case of X-quasinormal classes, where X is a local Fitting class of partially soluble groups.


Sign in / Sign up

Export Citation Format

Share Document