scholarly journals Growth sequence of globally idemportent semigroups

Author(s):  
György Pollák

AbstractThe n–th member of the growth sequence of a globally idempotent finite semigroup without identity element is at least 2n. (This had been conjectured by J. Wiegold.)

Author(s):  
James Wiegold ◽  
H. Lausch

AbstractThe growth sequence of a finite semigroup S is the sequence {d(Sn)}, where Sn is the nth direct power of S and d stands for minimum generating number. When S has an identity, d(Sn) = d(Tn) + kn for all n, where T is the group of units and k is the minimum number of generators of S mod T. Thus d(Sn) is essentially known since d(Tn) is (see reference 4), and indeed d(Sn) is then eventually piecewise linear. On the other hand, if S has no identity, there exists a real number c > 1 such that d(Sn) ≥ cn for all n ≥ 2.


2019 ◽  
Vol 109 (1) ◽  
pp. 24-35
Author(s):  
ASHLEY CLAYTON ◽  
NIK RUŠKUC

The direct product $\mathbb{N}\times \mathbb{N}$ of two free monogenic semigroups contains uncountably many pairwise nonisomorphic subdirect products. Furthermore, the following hold for $\mathbb{N}\times S$, where $S$ is a finite semigroup. It contains only countably many pairwise nonisomorphic subsemigroups if and only if $S$ is a union of groups. And it contains only countably many pairwise nonisomorphic subdirect products if and only if every element of $S$ has a relative left or right identity element.


1979 ◽  
Vol 85 (2) ◽  
pp. 317-324 ◽  
Author(s):  
C. M. Edwards

A JB-algebra A is a real Jordan algebra, which is also a Banach space, the norm in which satisfies the conditions thatandfor all elements a and b in A. It follows from (1.1) and (l.2) thatfor all elements a and b in A. When the JB-algebra A possesses an identity element then A is said to be a unital JB-algebra and (1.2) is equivalent to the condition thatfor all elements a and b in A. For the general theory of JB-algebras the reader is referred to (2), (3), (7) and (10).


1982 ◽  
Vol 47 (4) ◽  
pp. 734-738
Author(s):  
Bruce I. Rose

In this note we show that taking a scalar extension of two elementarily equivalent finite-dimensional algebras over the same field preserves elementary equivalence. The general question of whether or not tensor product preserves elementary equivalence was originally raised in [4]. In [3] Feferman relates an example of Ersov which answers the question negatively. Eklof and Olin [7] also provide a counterexample to the general question in the context of two-sorted structures. Thus the result proved below is a partial positive answer to a general question whose status has been resolved negatively. From the viewpoint of applied model theory it seems desirable to find contexts in which positive statements of preservation can be obtained. Our result does have an application; a corollary to it increases our understanding of what it means for two division algebras to be elementarily equivalent.All algebras are finite-dimensional algebras over fields. All algebras contain an identity element, but are not necessarily associative.Recall that the center of a not necessarily associative algebra A is the set of elements which commute and “associate” with all elements of A. The notion of a scalar extension is an important one in algebra. If A is an algebra over F and G is an extension field of F, then the scalar extension of A by G is the algebra A ⊗F G.


2006 ◽  
Vol 16 (04) ◽  
pp. 739-748 ◽  
Author(s):  
JOHN RHODES ◽  
BENJAMIN STEINBERG
Keyword(s):  
Type Ii ◽  

We prove the following two results announced by Rhodes: the Type II subsemigroup of a finite semigroup can fall arbitrarily in complexity; the complexity pseudovarieties Cn (n ≥ 1) are not local.


2016 ◽  
Vol Vol. 17 no. 3 (Combinatorics) ◽  
Author(s):  
Inna Mikhaylova

International audience Epigroups are semigroups equipped with an additional unary operation called pseudoinversion. Each finite semigroup can be considered as an epigroup. We prove the following theorem announced by Zhil'tsov in 2000: the equational theory of the class of all epigroups coincides with the equational theory of the class of all finite epigroups and is decidable. We show that the theory is not finitely based but provide a transparent infinite basis for it.


2021 ◽  
Vol 19 (1) ◽  
pp. 850-862
Author(s):  
Huani Li ◽  
Xuanlong Ma ◽  
Ruiqin Fu

Abstract The intersection power graph of a finite group G G is the graph whose vertex set is G G , and two distinct vertices x x and y y are adjacent if either one of x x and y y is the identity element of G G , or ⟨ x ⟩ ∩ ⟨ y ⟩ \langle x\rangle \cap \langle y\rangle is non-trivial. In this paper, we completely classify all finite groups whose intersection power graphs are toroidal and projective-planar.


2021 ◽  
Vol 34 (4) ◽  
pp. 68-77
Author(s):  
Alaa J. Nawaf ◽  
Akram S. Mohammad

         Let  be any group with identity element (e) . A subgroup intersection graph of  a subset  is the Graph with V ( ) =  - e and two separate peaks c and d contiguous for c and d if and only if      , Where  is a Periodic subset of resulting from  . We find some topological indicators in this paper and Multi-border (Hosoya and Schultz) of   , where    ,  is aprime number.


Sign in / Sign up

Export Citation Format

Share Document