scholarly journals Inequalities and representation formulas for functions of exponential type

Author(s):  
C. Frappier ◽  
P. Olivier

AbstractWe generalise the classical Bernstein's inequality: . Moreover we obtain a new representation formula for entire functions of exponential type.

1988 ◽  
Vol 40 (04) ◽  
pp. 1010-1024 ◽  
Author(s):  
Clément Frappier

Let Bτ denote the class of entire functions of exponential type τ (>0) bounded on the real axis. For the function f ∊ Bτ we have the interpolation formula [1, p. 143] 1.1 where t, γ are real numbers and is the so called conjugate function of f. Let us put 1.2 The function Gγ,f is a periodic function of α, with period 2. For t = 0 (the general case is obtained by translation) the righthand member of (1) is 2τGγ,f (1). In the following paper we suppose that f satisfies an additional hypothesis of the form f(x) = O(|x|-ε), for some ε > 0, as x → ±∞ and we give an integral representation of Gγ,f(α) which is valid for 0 ≦ α ≦ 2.


1991 ◽  
Vol 43 (1) ◽  
pp. 34-47 ◽  
Author(s):  
Clément Frappier

We adopt the terminology and notations of [5]. If f ∈ Bτ is an entire function of exponential type τ bounded on the real axis then we have the complementary interpolation formulas [1, p. 142-143] andwhere t, γ are reals and


1984 ◽  
Vol 27 (4) ◽  
pp. 463-471 ◽  
Author(s):  
Clément Frappier

AbstractBernstein's inequality says that if f is an entire function of exponential type τ which is bounded on the real axis thenGenchev has proved that if, in addition, hf (π/2) ≤0, where hf is the indicator function of f, thenUsing a method of approximation due to Lewitan, in a form given by Hörmander, we obtain, to begin, a generalization and a refinement of Genchev's result. Also, we extend to entire functions of exponential type two results first proved for polynomials by Rahman. Finally, we generalize a theorem of Boas concerning trigonometric polynomials vanishing at the origin.


Author(s):  
C. Frappier

AbstractWe introduce a sequence of polynomials which are extensions of the classic Bernoulli polynomials. This generalization is obtained by using the Bessel functions of the first kind. We use these polynomials to evaluate explicitly a general class of series containing an entire function of exponential type.


Sign in / Sign up

Export Citation Format

Share Document