scholarly journals HARDY AND RELLICH INEQUALITIES ON THE COMPLEMENT OF CONVEX SETS

2018 ◽  
Vol 108 (1) ◽  
pp. 98-119
Author(s):  
DEREK W. ROBINSON

We establish existence of weighted Hardy and Rellich inequalities on the spaces $L_{p}(\unicode[STIX]{x1D6FA})$, where $\unicode[STIX]{x1D6FA}=\mathbf{R}^{d}\backslash K$ with $K$ a closed convex subset of $\mathbf{R}^{d}$. Let $\unicode[STIX]{x1D6E4}=\unicode[STIX]{x2202}\unicode[STIX]{x1D6FA}$ denote the boundary of $\unicode[STIX]{x1D6FA}$ and $d_{\unicode[STIX]{x1D6E4}}$ the Euclidean distance to $\unicode[STIX]{x1D6E4}$. We consider weighting functions $c_{\unicode[STIX]{x1D6FA}}=c\circ d_{\unicode[STIX]{x1D6E4}}$ with $c(s)=s^{\unicode[STIX]{x1D6FF}}(1+s)^{\unicode[STIX]{x1D6FF}^{\prime }-\unicode[STIX]{x1D6FF}}$ and $\unicode[STIX]{x1D6FF},\unicode[STIX]{x1D6FF}^{\prime }\geq 0$. Then the Hardy inequalities take the form $$\begin{eqnarray}\int _{\unicode[STIX]{x1D6FA}}c_{\unicode[STIX]{x1D6FA}}|\unicode[STIX]{x1D6FB}\unicode[STIX]{x1D711}|^{p}\geq b_{p}\int _{\unicode[STIX]{x1D6FA}}c_{\unicode[STIX]{x1D6FA}}\,d_{\unicode[STIX]{x1D6E4}}^{-p}|\unicode[STIX]{x1D711}|^{p}\end{eqnarray}$$ and the Rellich inequalities are given by $$\begin{eqnarray}\int _{\unicode[STIX]{x1D6FA}}|H\unicode[STIX]{x1D711}|^{p}\geq d_{p}\int _{\unicode[STIX]{x1D6FA}}|c_{\unicode[STIX]{x1D6FA}}\,d_{\unicode[STIX]{x1D6E4}}^{-2}\unicode[STIX]{x1D711}|^{p}\end{eqnarray}$$ with $H=-\text{div}(c_{\unicode[STIX]{x1D6FA}}\unicode[STIX]{x1D6FB})$. The constants $b_{p},d_{p}$ depend on the weighting parameters $\unicode[STIX]{x1D6FF},\unicode[STIX]{x1D6FF}^{\prime }\geq 0$ and the Hausdorff dimension of the boundary. We compute the optimal constants in a broad range of situations.

1974 ◽  
Vol 17 (2) ◽  
pp. 295-296 ◽  
Author(s):  
Fredric M. Pollack

The numerical range W(T) of a bounded linear operator T on a Hilbert space H is defined byW(T) is always a convex subset of the plane [1] and clearly W(T) is bounded since it is contained in the ball of radius ‖T‖ about the origin. Which non-empty convex bounded subsets of the plane are the numerical range of an operator? The theorem we prove below shows that every non-empty convex bounded subset of the plane is W(T) for some T.


Author(s):  
Paolo Dulio ◽  
Andrea Frosini ◽  
Simone Rinaldi ◽  
Lama Tarsissi ◽  
Laurent Vuillon

AbstractA remarkable family of discrete sets which has recently attracted the attention of the discrete geometry community is the family of convex polyominoes, that are the discrete counterpart of Euclidean convex sets, and combine the constraints of convexity and connectedness. In this paper we study the problem of their reconstruction from orthogonal projections, relying on the approach defined by Barcucci et al. (Theor Comput Sci 155(2):321–347, 1996). In particular, during the reconstruction process it may be necessary to expand a convex subset of the interior part of the polyomino, say the polyomino kernel, by adding points at specific positions of its contour, without losing its convexity. To reach this goal we consider convexity in terms of certain combinatorial properties of the boundary word encoding the polyomino. So, we first show some conditions that allow us to extend the kernel maintaining the convexity. Then, we provide examples where the addition of one or two points causes a loss of convexity, which can be restored by adding other points, whose number and positions cannot be determined a priori.


1995 ◽  
Vol 27 (4) ◽  
pp. 931-942 ◽  
Author(s):  
Ilya S. Molchanov ◽  
Edward Omey ◽  
Eugene Kozarovitzky

A set-valued analog of the elementary renewal theorem for Minkowski sums of random closed sets is considered. The corresponding renewal function is defined as where are Minkowski (element-wise) sums of i.i.d. random compact convex sets. In this paper we determine the limit of H(tK)/t as t tends to infinity. For K containing the origin as an interior point, where hK(u) is the support function of K and is the set of all unit vectors u with EhA(u) > 0. Other set-valued generalizations of the renewal function are also suggested.


1995 ◽  
Vol 15 (1) ◽  
pp. 77-97 ◽  
Author(s):  
Irene Hueter ◽  
Steven P. Lalley

Let A1, A2,…,Ak be a finite set of contractive, affine, invertible self-mappings of R2. A compact subset Λ of R2 is said to be self-affine with affinitiesA1, A2,…,Ak ifIt is known [8] that for any such set of contractive affine mappings there is a unique (compact) SA set with these affinities. When the affine mappings A1, A2,…,Ak are similarity transformations, the set Λ is said to be self-similar. Self-similar sets are well understood, at least when the images Ai(Λ) have ‘small’ overlap: there is a simple and explicit formula for the Hausdorff and box dimensions [12, 10]; these are always equal; and the δ-dimensional Hausdorff measure of such a set (where δ is the Hausdorff dimension) is always positive and finite.


2017 ◽  
Vol 39 (4) ◽  
pp. 889-897 ◽  
Author(s):  
ZOLTÁN BUCZOLICH

We show that $\unicode[STIX]{x1D714}(n)$ and $\unicode[STIX]{x1D6FA}(n)$, the number of distinct prime factors of $n$ and the number of distinct prime factors of $n$ counted according to multiplicity, are good weighting functions for the pointwise ergodic theorem in $L^{1}$. That is, if $g$ denotes one of these functions and $S_{g,K}=\sum _{n\leq K}g(n)$, then for every ergodic dynamical system $(X,{\mathcal{A}},\unicode[STIX]{x1D707},\unicode[STIX]{x1D70F})$ and every $f\in L^{1}(X)$, $$\begin{eqnarray}\lim _{K\rightarrow \infty }\frac{1}{S_{g,K}}\mathop{\sum }_{n=1}^{K}g(n)f(\unicode[STIX]{x1D70F}^{n}x)=\int _{X}f\,d\unicode[STIX]{x1D707}\quad \text{for }\unicode[STIX]{x1D707}\text{ almost every }x\in X.\end{eqnarray}$$ This answers a question raised by Cuny and Weber, who showed this result for $L^{p}$, $p>1$.


1967 ◽  
Vol 10 (5) ◽  
pp. 669-673 ◽  
Author(s):  
J.H.H. Chalk

Let (x1, x2, …, xn) denote the coordinates of a point of Euclidean n-space En. Let be a set of n+1 points of En with the property thatform a linearly independent set and define a lattice Λ of pointsby allowing u1, …, un to take all integer values.


1988 ◽  
Vol 31 (1) ◽  
pp. 121-128 ◽  
Author(s):  
R. R. Phelps

AbstractThe Bishop-Phelps theorem guarantees the existence of support points and support functionals for a nonempty closed convex subset of a Banach space; equivalently, it guarantees the existence of subdifferentials and points of subdifferentiability of a proper lower semicontinuous convex function on a Banach space. In this note we show that most of these results cannot be extended to pairs of convex sets or functions, even in Hilbert space. For instance, two proper lower semicontinuous convex functions need not have a common point of subdifferentiability nor need they have a subdifferential in common. Negative answers are also obtained to certain questions concerning density of support points for the closed sum of two convex subsets of Hilbert space.


1976 ◽  
Vol 19 (1) ◽  
pp. 7-12 ◽  
Author(s):  
Joseph Bogin

In [7], Goebel, Kirk and Shimi proved the following:Theorem. Let X be a uniformly convex Banach space, K a nonempty bounded closed and convex subset of X, and F:K→K a continuous mapping satisfying for each x, y∈K:(1)where ai≥0 and Then F has a fixed point in K.In this paper we shall prove that this theorem remains true in any Banach space X, provided that K is a nonempty, weakly compact convex subset of X and has normal structure (see Definition 1 below).


2019 ◽  
Vol 85 (1) ◽  
pp. 486-510
Author(s):  
RUPERT HÖLZL ◽  
WOLFGANG MERKLE ◽  
JOSEPH MILLER ◽  
FRANK STEPHAN ◽  
LIANG YU

AbstractWe prove that the continuous function${\rm{\hat \Omega }}:2^\omega \to $ that is defined via$X \mapsto \mathop \sum \limits_n 2^{ - K\left( {Xn} \right)} $ for all $X \in {2^\omega }$ is differentiable exactly at the Martin-Löf random reals with the derivative having value 0; that it is nowhere monotonic; and that $\mathop \smallint \nolimits _0^1{\rm{\hat{\Omega }}}\left( X \right)\,{\rm{d}}X$ is a left-c.e. $wtt$-complete real having effective Hausdorff dimension ${1 / 2}$.We further investigate the algorithmic properties of ${\rm{\hat{\Omega }}}$. For example, we show that the maximal value of ${\rm{\hat{\Omega }}}$ must be random, the minimal value must be Turing complete, and that ${\rm{\hat{\Omega }}}\left( X \right) \oplus X{ \ge _T}\emptyset \prime$ for every X. We also obtain some machine-dependent results, including that for every $\varepsilon > 0$, there is a universal machine V such that ${{\rm{\hat{\Omega }}}_V}$ maps every real X having effective Hausdorff dimension greater than ε to a real of effective Hausdorff dimension 0 with the property that $X{ \le _{tt}}{{\rm{\hat{\Omega }}}_V}\left( X \right)$; and that there is a real X and a universal machine V such that ${{\rm{\Omega }}_V}\left( X \right)$ is rational.


2020 ◽  
Vol 10 (03) ◽  
pp. 2050016
Author(s):  
Michael Ruzhansky ◽  
Bolys Sabitbek ◽  
Durvudkhan Suragan

In this paper, we present geometric Hardy inequalities for the sub-Laplacian in half-spaces of stratified groups. As a consequence, we obtain the following geometric Hardy inequality in a half-space of the Heisenberg group with a sharp constant: [Formula: see text] which solves a conjecture in the paper [S. Larson, Geometric Hardy inequalities for the sub-elliptic Laplacian on convex domain in the Heisenberg group, Bull. Math. Sci. 6 (2016) 335–352]. Here, [Formula: see text] is the angle function. Also, we obtain a version of the Hardy–Sobolev inequality in a half-space of the Heisenberg group: [Formula: see text] where [Formula: see text] is the Euclidean distance to the boundary, [Formula: see text], and [Formula: see text]. For [Formula: see text], this gives the Hardy–Sobolev–Maz’ya inequality on the Heisenberg group.


Sign in / Sign up

Export Citation Format

Share Document