scholarly journals TOWARDS A NON-ARCHIMEDEAN ANALYTIC ANALOG OF THE BASS–QUILLEN CONJECTURE

2019 ◽  
Vol 19 (6) ◽  
pp. 1931-1946
Author(s):  
Moritz Kerz ◽  
Shuji Saito ◽  
Georg Tamme

We suggest an analog of the Bass–Quillen conjecture for smooth affinoid algebras over a complete non-archimedean field. We prove this in the rank-1 case, i.e. for the Picard group. For complete discretely valued fields and regular affinoid algebras that admit a regular model (automatic if the residue characteristic is zero) we prove a similar statement for the Grothendieck group of vector bundles $K_{0}$.

1987 ◽  
Vol 39 (2) ◽  
pp. 365-427 ◽  
Author(s):  
Albert Jeu-Liang Sheu

In recent years, there has been a rapid growth of the K-theory of C*-algebras. From a certain point of view, C*-algebras can be treated as “non-commutative topological spaces”, while finitely generated projective modules over them can be thought of as “non-commutative vector bundles”. The K-theory of C*-algebras [30] then generalizes the classical K-theory of topological spaces [1]. In particular, the K0-group of a unital C*-algebra A is the group “generated” by (or more precisely, the Grothendieck group of) the commutative semigroup of stable isomorphism classes of finitely generated projective modules over A with direct summation as the binary operation. The semigroup gives an order structure on K0(A) and is usually called the positive cone in K0(A).Around 1980, the work of Pimsner and Voiculescu [18] and of A. Connes [4] provided effective ways to compute the K-groups of C*-algebras. Then the classification of finitely generated projective modules over certain unital C*-algebras up to stable isomorphism could be done by computing their K0-groups as ordered groups. Later on, inspired by A. Connes's development of non-commutative differential geometry on finitely generated projective modules [2], the deeper question of classifying such modules up to isomorphism and hence the so-called cancellation question were raised (cf. [21] ).


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sarbeswar Pal ◽  
Christian Pauly

Abstract Let X be a smooth projective complex curve of genus g ≥ 2 and let M X (2,Λ) be the moduli space of semi-stable rank-2 vector bundles over X with fixed determinant Λ. We show that the wobbly locus, i.e. the locus of semi-stable vector bundles admitting a non-zero nilpotent Higgs field, is a union of divisors 𝓦 k ⊂ M X (2,Λ). We show that on one wobbly divisor the set of maximal subbundles is degenerate. We also compute the class of the divisors 𝓦 k in the Picard group of M X (2, Λ).


2021 ◽  
Vol 30 (1) ◽  
pp. 66-89
Author(s):  
Lie Fu ◽  
◽  
Victoria Hoskins ◽  
Simon Pepin Lehalleur

<abstract><p>We prove formulas for the rational Chow motives of moduli spaces of semistable vector bundles and Higgs bundles of rank $ 3 $ and coprime degree on a smooth projective curve. Our approach involves identifying criteria to lift identities in (a completion of) the Grothendieck group of effective Chow motives to isomorphisms in the category of Chow motives. For the Higgs moduli space, we use motivic Białynicki-Birula decompositions associated with a scaling action, together with the variation of stability and wall-crossing for moduli spaces of rank $ 2 $ pairs, which occur in the fixed locus of this action.</p></abstract>


2020 ◽  
Vol 2020 (765) ◽  
pp. 101-137 ◽  
Author(s):  
Soheyla Feyzbakhsh

AbstractLet C be a curve of genus {g=11} or {g\geq 13} on a K3 surface whose Picard group is generated by the curve class {[C]}. We use wall-crossing with respect to Bridgeland stability conditions to generalise Mukai’s program to this situation: we show how to reconstruct the K3 surface containing the curve C as a Fourier–Mukai transform of a Brill–Noether locus of vector bundles on C.


1989 ◽  
Vol 106 (3) ◽  
pp. 471-480 ◽  
Author(s):  
J. Bochnak ◽  
W. Kucharz

LetXbe an affine real algebraic variety, i.e., up to biregular isomorphism an algebraic subset of ℝn. (For definitions and notions of real algebraic geometry we refer the reader to the book [6].) Letdenote the ring of regular functions onX([6], chapter 3). (IfXis an algebraic subset of ℝnthenis comprised of all functions of the formf/g, whereg, f: X→ ℝ are polynomial functions withg−1(O) = Ø.) In this paper, assuming thatXis compact, non-singular, and that dimX≤ 3, we compute the Grothendieck groupof projective modules over(cf. Section 1), and the Grothendieck groupand the Witt groupof symplectic spaces over(cf. Section 2), in terms of the algebraic cohomology groupsandgenerated by the cohomology classes associated with the algebraic subvarieties ofX. We also relate the groupto the Grothendieck groupKO(X) of continuous real vector bundles overX, and the groupsandto the Grothendieck groupK(X)of continuous complex vector bundles overX.


2016 ◽  
Vol 9 (1) ◽  
Author(s):  
T. V. Obikhod

The duality between E8xE8 heteritic string on manifold K3xT2 and Type IIA string compactified on a Calabi-Yau manifold induces a correspondence between vector bundles on K3xT2 and Calabi-Yau manifolds. Vector bundles over compact base space K3xT2 form the set of isomorphism classes, which is a semi-ring under the operation of Whitney sum and tensor product. The construction of semi-ring V ect X of isomorphism classes of complex vector bundles over X leads to the ring KX = K(V ect X), called Grothendieck group. As K3 has no isometries and no non-trivial one-cycles, so vector bundle winding modes arise from the T2 compactification. Since we have focused on supergravity in d = 11, there exist solutions in d = 10 for which space-time is Minkowski space and extra dimensions are K3xT2. The complete set of soliton solutions of supergravity theory is characterized by RR charges, identified by K-theory. Toric presentation of Calabi-Yau through Batyrev's toric approximation enables us to connect transitions between Calabi-Yau manifolds, classified by enhanced symmetry group, with K-theory classification.


Author(s):  
Ehud Hrushovski ◽  
François Loeser

This chapter provides some background material on definable sets, definable types, orthogonality to a definable set, and stable domination, especially in the valued field context. It considers more specifically these concepts in the framework of the theory ACVF of algebraically closed valued fields and describes the definable types concentrating on a stable definable V as an ind-definable set. It also proves a key result that demonstrates definable types as integrals of stably dominated types along some definable type on the value group sort. Finally, it discusses the notion of pseudo-Galois coverings. Every nonempty definable set over an algebraically closed substructure of a model of ACVF extends to a definable type.


Author(s):  
Bernhard M¨uhlherr ◽  
Holger P. Petersson ◽  
Richard M. Weiss

This chapter proves that Bruhat-Tits buildings exist. It begins with a few definitions and simple observations about quadratic forms, including a 1-fold Pfister form, followed by a discussion of the existence part of the Structure Theorem for complete discretely valued fields due to H. Hasse and F. K. Schmidt. It then considers the generic unramified cases; the generic semi-ramified cases, the generic ramified cases, the wild unramified cases, the wild semi-ramified cases, and the wild ramified cases. These cases range from a unique unramified quadratic space to an unramified separable quadratic extension, a tamely ramified division algebra, a ramified separable quadratic extension, and a unique unramified quaternion division algebra. The chapter also describes ramified quaternion division algebras D₁, D₂, and D₃ over K containing a common subfield E such that E/K is a ramified separable extension.


Sign in / Sign up

Export Citation Format

Share Document