Comparative assessment of SCoT and ISSR markers for analysis of genetic diversity and population structure in some Aegilops tauschii Coss. accessions

2021 ◽  
pp. 1-9
Author(s):  
Atefeh Nouri ◽  
Maryam Golabadi ◽  
Alireza Etminan ◽  
Abdolmajid Rezaei ◽  
Ali Ashraf Mehrabi

Abstract Aegilops tauschii, the diploid progenitor of the wheat D-genome, is a valuable genetic resource for wheat breeders. In this study, we compared the efficiency of inter-simple sequence repeat (ISSR) (as an arbitrary technique) and start codon targeted (SCoT) (as a gene-targeting technique) markers in determining the genetic diversity and population structure of 90 accessions of Ae. tauschii. SCoT markers indicated the highest values for polymorphism information content, marker index and effective multiplex ratio compared to ISSR markers. The total genetic diversity (Ht) and genetic diversity within populations (Hs) parameters were comparably modest for the two marker systems. The results of the analysis of molecular variance showed that the genetic variation within populations was significantly higher than among them (ISSR: 92 versus 8%; SCoT: 88 versus 12%). Furthermore, SCoT markers discovered a high level of genetic differentiation among populations than ISSRs (0.19 versus 0.05), while the amount of gene flow detected by ISSR was higher than SCoT (2.13 versus 8.62). Cluster analysis and population structure of SCoT and ISSR data divided all investigated accessions into two and four main clusters, respectively. Our results revealed that SCoT and ISSR fingerprinting could be used to further molecular analysis in Ae. tauschii and other wild species. The high-genetic variability found in this study also indicates the valuable genetic potential present in the investigated Ae. tauschii germplasm, which could be utilized for future genetic analysis and linkage mapping in breeding programmes.

2021 ◽  
pp. 1-11
Author(s):  
Karishma Kashyap ◽  
Rasika M. Bhagwat ◽  
Sofia Banu

Abstract Khasi mandarin (Citrus reticulata Blanco) is a commercial mandarin variety grown in northeast India and one of the 175 Indian food items included in the global first food atlas. The cultivated plantations of Khasi mandarin grown prominently in the lower Brahmaputra valley of Assam, northeast India, have been genetically eroded. The lack in the efforts for conservation of genetic variability in this mandarin variety prompted diversity analysis of Khasi mandarin germplasm across the region. Thus, the study aimed to investigate genetic diversity and partitioning of the genetic variations within and among 92 populations of Khasi mandarin collected from 10 cultivated sites in Kamrup and Kamrup (M) districts of Assam, India, using Inter-Simple Sequence Repeat (ISSR) markers. The amplification of genomic DNA with 17 ISSR primers yielded 216 scorable DNA amplicons of which 177 (81.94%) were polymorphic. The average polymorphism information content was 0.39 per primer. The total genetic diversity (HT = 0.28 ± 0.03) was close to the diversity within the population (HS = 0.20 ± 0.01). A high mean coefficient of gene differentiation (GST = 0.29) reflected a high level of gene flow (Nm = 1.22), indicating high genetic differentiation among the populations. Analysis of Molecular Variance (AMOVA) showed 78% of intra-population differentiation, 21% among the population and 1% among the districts. The obtained results indicate the existence of a high level of genetic diversity in the cultivated Khasi mandarin populations, indicating the need for preservation of each existing population to revive the dying out orchards in northeast India.


2015 ◽  
Vol 71 (1) ◽  
pp. 81-95 ◽  
Author(s):  
Hoda Moradkhani ◽  
Ali Ashraf Mehrabi ◽  
Alireza Etminan ◽  
Alireza Pour-Aboughadareh

AbstractThe aim of this study is investigation the applicability of SSR and ISSR markers in evaluating the genetic relationships in twenty accessions ofAegilopsandTriticumspecies with D genome in different ploidy levels. Totally, 119 bands and 46 alleles were detected using ten primers for ISSR and SSR markers, respectively. Polymorphism Information Content values for all primers ranged from 0.345 to 0.375 with an average of 0.367 for SSR, and varied from 0.29 to 0.44 with the average 0.37 for ISSR marker. Analysis of molecular variance (AMOVA) revealed that 81% (ISSR) and 84% (SSR) of variability was partitioned among individuals within populations. Comparing the genetic diversity ofAegilopsandTriticumaccessions, based on genetic parameters, shows that genetic variation ofAe. crassaandAe. tauschiispecies are higher than other species, especially in terms of Nei’s gene diversity. Cluster analysis, based on both markers, separated total accessions in three groups. However, classification based on SSR marker data was not conformed to classification according to ISSR marker data. Principal co-ordinate analysis (PCoA) for SSR and ISSR data showed that, the first two components clarified 53.48% and 49.91% of the total variation, respectively. This analysis (PCoA), also, indicated consistent patterns of genetic relationships for ISSR data sets, however, the grouping of accessions was not completely accorded to their own geographical origins. Consequently, a high level of genetic diversity was revealed from the accessions sampled from different eco-geographical regions of Iran.


ZooKeys ◽  
2020 ◽  
Vol 941 ◽  
pp. 49-69
Author(s):  
Diana Ortíz-Gamino ◽  
Josefat Gregorio ◽  
Luis Cunha ◽  
Esperanza Martínez-Romero ◽  
Carlos Fragoso ◽  
...  

Pontoscolex corethrurus (Müller, 1857) is an invasive tropical earthworm, globally distributed. It reproduces through parthenogenesis, which theoretically results in low genetic diversity. The analysis of the population structure of P. corethrurus using molecular markers may significantly contribute to understanding the ecology and reproductive system of this earthworm species. This work assessed the genetic diversity and population structure of P. corethrurus with 34 polymorphic inter simple sequence repeat markers, covering four populations in tropical and temperate pastures from Veracruz State. Nuclear markers distinguished two genetic clusters, probably corresponding to two distinct genetic lineages. The number of clones detected in the AC population was lower than expected for a parthenogenetic species. Also, the apparent lack of differences in population structures related to the geographic region among the populations studied may indicate that human-mediated transference is prevalent in these areas. Still, most individuals apparently belong to lineage A, and only a few individuals seem to belong to the lineage B. Thus, the admixture signatures found among the four populations of P. corethrurus may have facilitated a successful invasion by directly increasing fitness. In summary, addressing the genetic variation of P. corethrurus with ISSR markers was a suitable approach, as it evidenced the genetic diversity and relationships in the populations evaluated.


2021 ◽  
Author(s):  
Deepanshu jayaswal ◽  
garima Yadav ◽  
Kuldip Jayaswall ◽  
Abhishek Bhandawat ◽  
Arvind Nath Singh ◽  
...  

In various leguminous crops, chickpea is the fourth most important legume contributing 3.1% to the total legume production. Grains of chickpea are rich source of proteins, minerals and vitamins which makes them suitable for both food and feed. For any crop to be improved, the knowledge of genetic diversity of wild and elite cultivar is very important. Therefore among various available marker systems, molecular markers are more reliable and accurate, therefore are very commonly used for genetic diversity analysis, phylogenetic studies and cultivar identification. Due to several advantages of Inter Simple Sequence Repeat (ISSR) markers in present study we analyzed the genetic diversity, structure, cross-species transferability and allelic richness in 50 chickpea collection using 23 ISSR markers. The observed parameters such as allele number varied from 3 to 16, and PIC varied from 0.15 to 0.4988 respectively. Further, range of allele size varied from 150 to 1600 bp which shows the significance of ISSR markers for chickpea germplasms characterization. On the basis of ISSR marker genotypic data dendrogram were constructed which divides these 50 chickpea in group I and II showing the reliability of ISSR markers. Among 50 chickpea, the accession P 74-1 is in group I and rest are in group II. Further we made mini-core collection of 15 diverse chickpea and subgrouped them. Dendrogram, PCA, Dissimilarity matrix and Bayesian model based genetic clustering of 50 chickpea germplasms revealed that P 74-1,P 1883, P 1260 very diverse chickpea accession. Characterization of these diverse chickpea would help in maintenance breeding, conservation and in future could be used to develop climate resilient elite cultivar of chickpea. Utilization of these novel ISSRs markers in diversity analysis and population structure characterization of 50 chickpea germplasm suggests their wider efficacy in superior scale for molecular breeding studies in chickpea.


2021 ◽  
Vol 117 (4) ◽  
pp. 1
Author(s):  
Faith Ewewluegim EMEGHA ◽  
David Adebayo ANIMASAUN ◽  
Folusho BANKOLE ◽  
Gbadebo OLAOYE

<p class="042abstractstekst"><span lang="EN-US">Genetic diversity information among a population is important in exploiting heterozygosity for the improvement of crop species through breeding programmes. This study was therefore, conducted to assess genetic diversity and establish molecular relationships among 20 selected exotic sugarcane accessions from the Unilorin Sugar Research Institute germplasm using Inter Simple Sequence Repeat (ISSR) molecular markers. Genomic DNA was extracted from the sugarcane leaf. Fragments amplification was then performed by polymerase chain reaction (PCR) with ISSR markers and the data obtained were analyzed using MEGA 4 software. Analysis of the electropherogram showed a total of 39 loci consisting of 369 bands, out of which 95.8% were polymorphic. The biplot analysis showed all the markers contributed to the observed diversity with the least achieved with ISSR6. The principal co-ordinate analysis grouped the accessions into four clusters, comprising mixtures of all the six collection sites. The polymorphism obtained in the present study showed that the ISSR markers are effective for assessment of genetic diversity of the sugarcane accessions as it reveals the genetic similarity or divergence of the accessions regardless their place of origin or cultivation.</span></p>


Author(s):  
Sherin Jose ◽  
Anusha Prasannan

Genetic diversity among ten small cardamom accessions having variability in yield traits was investigated using inter simple sequence repeat markers (ISSR). A better understanding of the variability in yield is essential for the proper utilization of genotypes in breeding programmes. Of the 10 primers analysed, 5 reported polymorphisms and generated a total of 47 scorable loci, of which 32 were polymorphic revealing 68% polymorphism. The molecular weight of the fragments ranged from 200-1100 bp. Specific banding pattern was observed in high yielding group using ISSR7 (800bp) and with ISSR 3 (800bp) for low yielding group. Genetic diversity analysis within and among the two groups showed maximum diversity in high yielding varieties based on the values of Nei’ s genetic diversity (h) and Shannon’s informative index (I). Dendrogram based on Jaccard’s similarity coefficients were generated based on an average linkage algorithm (UPGMA) using marker data. Clear grouping of the ten accessions of small cardamom into two clusters was observed. These results suggested that ISSR markers could efficiently differentiate the small cardamom genotypes based on yield and can be useful for future cardamom improvement programmes.


2020 ◽  
Vol 345 ◽  
pp. 15-25
Author(s):  
Meryem MAKKAOUI ◽  
Younes ABBAS ◽  
Salwa EL ANTRY-TAZY ◽  
Leila MEDRAOUI ◽  
Mohammed ALAMI ◽  
...  

Tetraclinis articulata (Vahl) Masters is one of Morocco's most important forest species. It is also found occasionally in Malta and Spain, showing significant adaptability to different bio-climatic conditions. However, the species is being affected by anthropogenic fragmentation, logging and neglect from authorities, which could lead to the irretrievable loss of this resource. In this study, the genetic diversity and genetic structure of ten Moroccan populations of T. articulata were assessed. Fifteen Inter-Simple Sequence Repeat (ISSR) markers were used. These generated 271 polymorphic fragments with an average of 18.06 per primer and showed 79.59% of polymorphism. The 129 individuals revealed a high level of genetic diversity (Hs = 0.221; Ht = 0.254) and 85% of genetic variation within populations. However, the genetic differentiation level was low (Gst = 0.13), which is consistent with the lack of correlation between genetic and geographic distances revealed by the Mantel test, resulting in a high level of gene flow (Nm = 3.294). Based on PCoA and neighbour-joining methods, the ten populations clustered under the effect of continental and marine climates. Compared with other conifers, the current genetic diversity and the pattern of T. articulata population structure indicate an important gene pool requiring efficient conservation strategies.


2020 ◽  
Vol 18 (3) ◽  
pp. e1005
Author(s):  
Gulsum Palacioglu ◽  
Harun Bayraktar ◽  
Goksel Ozer

Aim of study: To evaluate genetic variability and population structure of C. lindemuthianum isolates in Turkey and to record the reactions of some common bean cultivars to the pathogen isolates representing different genetic groups.Area of study: The study was performed in seven provinces of Turkey.Material and methods: Genetic diversity of 91 C. lindemuthianum isolates obtained from different provinces of Turkey was characterized by 27 iPBS and 30 ISSR primers. Also, the resistance of 40 common bean cultivars was scored against three isolates representing different genetic groups.Main results: The dendrogram based on the combined dataset of iPBS and ISSR markers classified the isolates into two main groups with a genetic similarity of 72%, which closely associated with the geographic distribution of the isolates. The dendrogram of Nei’s genetic distances and Structure analysis supported the clustering of C. lindemuthianum isolates according to the geographical provinces. The results indicated that high level of genetic diversity (GST= 0.4) and low level of gene flow (NM=0.748) exist among the populations. AMOVA analysis showed that 58.7% of total genetic variability resulted from genetic differences between the isolates within populations, while 41.29% was among populations. Four cultivars showed resistant reaction to three isolates, while the other cultivars were susceptible to at least one isolate.Research highlights: The results indicated that iPBS and ISSR markers were reliable and effective tools for analyzing population structure of C. lindemuthianum and revealed high level of genetic and pathogenic diversity among pathogen populations in Turkey.


Sign in / Sign up

Export Citation Format

Share Document