scholarly journals Introducing cover crops as fallow replacement in the Northern Great Plains: II. Impact on following wheat crops

Author(s):  
Maryse Bourgault ◽  
Samuel A. Wyffels ◽  
Julia M. Dafoe ◽  
Peggy F. Lamb ◽  
Darrin L. Boss

Abstract The introduction of cover crops as fallow replacement in the traditional cereal-based cropping system of the Northern Great Plains has the potential to decrease soil erosion, increase water infiltration, reduce weed pressure and improve soil health. However, there are concerns this might come at the cost of reduced production in the subsequent wheat crop due to soil water use by the cover crops. To determine this risk, a phased 2-year rotation of 15 different cover crop mixtures and winter wheat/spring wheat was established at the Northern Agricultural Research Center near Havre, MT from 2012 to 2020, or four rotation cycles. Controls included fallow–wheat and barley–wheat sequences. Cover crops and barley were terminated early July by haying, grazing or herbicide application. Yields were significantly decreased in wheat following cover crops in 3 out of 8 years, up to maximum of 1.4 t ha−1 (or 60%) for winter wheat following cool-season cover crop mixtures. However, cover crops also unexpectedly increased following wheat yields in 2018, possibly due in part to residual fertilizer. Within cool-, mid- and warm-season cover crop groups, individual mixtures did not show significant differences impact on following grain yields. Similarly, cover crop termination methods had no impact on spring or winter wheat grain yields in any of the 8 years considered. Wheat grain protein concentration was not affected by cover crop mixtures or termination treatments but was decreased in winter wheat following barley. Differences in soil water content across cover crop groups were only evident at the beginning of the third cycle in one field, but important reductions were observed below 15 cm in the last rotation cycle. In-season rainfall explained 43 and 13% of the variability in winter and spring wheat yields, respectively, compared to 2 and 1% for the previous year cover crop biomass. Further economic analyses are required to determine if the integration of livestock is necessary to mitigate the risks associated with the introduction of cover crops in replacement of fallow in the Northern Great Plains.

2000 ◽  
Vol 80 (2) ◽  
pp. 441-449 ◽  
Author(s):  
J. R. Moyer ◽  
R. E. Blackshaw ◽  
E. G. Smith ◽  
S. M. McGinn

Cropping systems in western Canada that include summer fallow can leave the soil exposed to erosion and require frequent weed control treatments. Cover crops have been used for soil conservation and to suppress weed growth. Experiments were conducted under rain-fed conditions at Lethbridge, Alberta to determine the effect of short-term fall rye (Secale cereale L.), winter wheat (Triticum aestivum L.) and annual rye cover crops in the fallow year on weed growth and subsequent wheat yield. Under favorable weather conditions fall rye was as effective as post-harvest plus early spring tillage or herbicides in spring weed control. Winter wheat and fall rye residues, after growth was terminated in June, reduced weed biomass in September by 50% compared to no cover crop in 1993 but had little effect on weeds in 1995. Fall-seeded cover crops reduced the density of dandelion (Taraxacum officinale Weber in Wiggers) and Canada thistle [Cirsium arvense (L.) Scop.] but increased the density of downy brome (Bromus tectorum L.), wild buckwheat (Polygonum convolvulus L.), and thyme-leaved spurge (Euphorbia serpyllifolia Pers.) in the following fall or spring. Wheat yields after fall rye and no cover crop were similar but yields after spring-seeded annual rye were less than after no cover crop. Spring-seeded annual rye did not adequately compete with weeds. Cover crops, unlike the no cover crop treatment, always left sufficient plant residue to protect the soil from erosion until the following wheat crop was seeded. Key words: Allelopathies, fall rye, nitrogen, soil conservation, soil moisture, weed control, spring rye, winter wheat


Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 202
Author(s):  
Jay D. Jabro ◽  
Brett L. Allen ◽  
Tatyana Rand ◽  
Sadikshya R. Dangi ◽  
Joshua W. Campbell

Compacted soils affect global crop productivity and environmental quality. A field study was conducted from 2014 to 2020 in the northern Great Plains, USA, to evaluate the effect of various rooting systems on soil compaction in 2 yr rotations of camelina (Camelina sativa L.), carinata (Brassica carinata A.) and a cover crop mix planted in place of fallow with durum (Triticum durum D.). The study was designed as a randomized complete block with three replications in a no-tillage system. The soil was classified as Dooley sandy loam (fine-loamy, mixed, superactive, frigid Typic Argiustolls) derived from glacial till parent material. Three measurements of soil penetration resistance (PR) were taken with a penetrometer to a depth of 0–30 cm within each plot. Soil moisture contents were determined using a TDR sensor at the time of PR measurements. Both measurements were monitored prior to planting in spring and after harvest. Initial PR results from spring 2014 showed that all plots had an average of 2.244 MPa between the 8–20 cm depth, due to a history of tillage and wheel traffic caused by various field activities. Covariance analysis indicated that soil PR was not significantly affected by crop type and moisture content. After one cycle of the 2 yr rotation, the 2016 measurements indicated that the compacted layer existed at the same initial depths. However, after two and three cycles, soil PR values were reduced to 1.480, 1.812, 1.775, 1.645 MPa in spring 2018 and 1.568, 1.581, 1.476, 1.458 MPa in 2020 under camelina, carinata, cover crop mix, and durum treatments, respectively. These findings indicate that previous cover crop roots could effectively improve soil compaction by penetrating the compacted layer, decompose over time and form voids and root channels. Although these results are novel and significant, further research is needed on different soils and under cover crops with different root systems to support our findings prior to making any conclusion.


2011 ◽  
Vol 27 (1) ◽  
pp. 12-20 ◽  
Author(s):  
Patrick M. Carr ◽  
Randy L. Anderson ◽  
Yvonne E. Lawley ◽  
Perry R. Miller ◽  
Steve F. Zwinger

AbstractThe use of killed cover crop mulch for weed suppression, soil erosion prevention and many other soil and crop benefits has been demonstrated in organic no-till or zero-till farming systems in eastern US regions and in Canada. Implements have been developed to make this system possible by terminating cover crops mechanically with little, if any, soil disturbance. Ongoing research in the US northern Great Plains is being conducted to identify cover crop species and termination methods for use in organic zero-till (OZ) systems that are adapted to the crop rotations and climate of this semi-arid region. Current termination strategies must be improved so that cover crop species are killed consistently and early enough in the growing season so that subsequent cash crops can be grown and harvested successfully. Delaying termination until advanced growth stages improves killing efficacy of cover crops and may provide weed-suppressive mulch for the remainder of the growing season, allowing no-till spring seeding of cash crops during the next growing season. Excessive water use by cover crops, inability of legume cover crops to supply adequate amounts of N for subsequent cash crops and failure of cover crops to suppress perennial weeds are additional obstacles that must be overcome before the use of killed cover crop mulch can be promoted as a weed control alternative to tillage in the US northern Great Plains. Use of vegetative mulch produced by killed cover crops will not be a panacea for the weed control challenges faced by organic growers, but rather one tool along with crop rotation, novel grazing strategies, the judicious use of high-residue cultivation equipment, such as the blade plow, and the use of approved herbicides with systemic activity in some instances, to provide organic farmers with new opportunities to incorporate OZ practices into their cropping systems. Emerging crop rotation designs for organic no-till systems may provide for more efficient use of nutrient and water resources, opportunities for livestock grazing before, during or after cash crop phases and improved integrated weed management strategies on organic farms.


Author(s):  
John R. Hendrickson ◽  
Mark A. Liebig ◽  
David W. Archer ◽  
Marty R. Schmer ◽  
Kristine A. Nichols ◽  
...  

Abstract Interest in cover crops is increasing but information is limited on integrating them into crop rotations especially in the relatively short growing season on the northern Great Plains. A 3-yr research project, initiated in 2009 near Mandan, North Dakota, USA, evaluated (1) what impact cover crops may have on subsequent cash crops yields and (2) whether cover crop mixtures are more productive and provide additional benefits compared to cover crop monocultures. The study evaluated 18 different cover crop monocultures and mixtures that were seeded in August following dry pea (Pisum sativum L.). The following year, spring wheat (Triticum aestivum L.), corn (Zea mays L.), soybean (Glycine max L.) and field pea were seeded into the different cover crop treatments and a non-treated control. A lack of timely precipitation in 2009 resulted in a low cover crop yield of 17 g m2 compared to 100 and 77 g m2 in 2008 and 2010, respectively. Subsequent cash crop yield was not affected by late-seeded cover crops. Cool-season cover crop monocultures were more productive than warm-season monocultures and some mixtures in 2008 and 2010. Relative yield total did not differ from one in any cover crop mixture suggesting that overyielding did not occur. Species selection rather than species diversity was the most important contributor to cover crop yield. Cover crops can be grown following short-season cash crops in the northern Great Plains, but precipitation timing and species selection are critical.


2002 ◽  
Vol 82 (2) ◽  
pp. 307-318 ◽  
Author(s):  
P. R. Miller ◽  
J. Waddington ◽  
C. L. McDonald ◽  
D. A. Derksen

Extension of the commonly used spring wheat (Triticum aestivum L.)-fallow rotation to include broadleaf crops requires information on their effects on a following wheat crop. We grew a spring wheat test crop on the stubbles of wheat and seven broadleaf crops: desi chickpea (Cicer arietinum L.), dry bean (Phaseolus vulgaris L.), dry pea (Pisum sativum L.), lentil (Lens culinaris L.), mustard (Brassica juncea L.), safflower (Carthamus tinctorius L.), and sunflower (Helianthus annuus L.). This study was conducted near Swift Current, SK, from 1993 to 1997, and Congress, SK, from 1995 to 1997. After harvest, soil water differed among crop stubbles and by sampling depth. To the 60-cm depth, only soil under dry bean stubble held more water (8 mm), while soil under lentil, desi chickpea, sunflower and safflower stubbles held less water (6, 8, 9 and 17 mm, respectively) than wheat stubble (P < 0.05). From 60 to 120 cm, soil under dry pea and dry bean held more water (7 and 10 mm, respectively), and under sunflower and safflower stubbles less (7 and 14 mm, respectively), than under wheat stubble (P < 0.05). Lentil, dry bean and dry pea stubbles averaged 5, 6 and 9 kg ha-1 greater soil N in the 0- to 120-cm soil depth than wheat stubble (P < 0.05). The average yield of wheat grown on the four pulse crop stubbles was 21% greater than yields on wheat stubble, but did not differ from the oilseed stubbles (P < 0.01). Compared to wheat stubble, wheat grown on broadleaf crop stubbles had higher grain protein concentrations, increasing by 8 and 5%, for pulses and oilseeds, respectively (P < 0.01). Nitrogen removal in the wheat test crop grain yield averaged 15 kg ha-1 for pulse stubbles compared with wheat stubble. Soil N contribution by pulse stubbles was an important factor contributing to wheat growth under a dryland cropping system on the northern Great Plains. Key words: Crop sequence, spring wheat, pulse crops, N cycling, water use


2017 ◽  
Vol 60 (6) ◽  
pp. 2083-2096 ◽  
Author(s):  
Pradip Adhikari ◽  
Nina Omani ◽  
Srinivasulu Ale ◽  
Paul B. DeLaune ◽  
Kelly R. Thorp ◽  
...  

Abstract. Interest in cover crops has been increasing in the Texas Rolling Plains (TRP) region, mainly to improve soil health. However, there are concerns that cover crops could potentially reduce soil water and thereby affect the yield of subsequent cash crops. Previous field studies from this region have demonstrated mixed results, with some showing a reduction in cash crop yield due to cover crops and others indicating no significant impact of cover crops on subsequent cotton fiber yield. The objectives of this study were to (1) evaluate the CROPGRO-Cotton and CERES-Wheat modules within the cropping system model (CSM) of the Decision Support System for Agrotechnology Transfer (DSSAT) for the TRP region, and (2) use the evaluated model to assess the long-term effects of growing winter wheat as a cover crop on water balances and seed cotton yield under irrigated and dryland conditions. The two DSSAT crop modules were calibrated using measured data on soil water and crop yield from four treatments: (1) irrigated cotton without a cover crop (CwoC-I), (2) irrigated cotton with winter wheat as a cover crop (CwC-I), (3) dryland cotton without a cover crop (CwoC-D), and (4) dryland cotton with a winter wheat cover crop (CwC-D) at the Texas A&amp;M AgriLife Research Station at Chillicothe from 2011 to 2015. The average percent error (PE) between the CSM-CROPGRO-Cotton simulated and measured seed cotton yield was -10.1% and -1.0% during the calibration and evaluation periods, respectively, and the percent root mean square error (%RMSE) was 11.9% during calibration and 27.6% during evaluation. For simulation of aboveground biomass by the CSM-CERES-Wheat model, the PE and %RMSE were 8.9% and 9.1%, respectively, during calibration and -0.9% and 21.8%, respectively, during evaluation. Results from the long-term (2001-2015) simulations indicated that there was no substantial reduction in average seed cotton yield and soil water due to growing winter wheat as a cover crop. Keywords: CERES-Wheat, Cover crop, Crop simulation model, CROPGRO-Cotton, DSSAT, Seed cotton yield, Soil water.


2010 ◽  
Vol 90 (4) ◽  
pp. 479-488 ◽  
Author(s):  
R E Blackshaw ◽  
L J Molnar ◽  
J R Moyer

Farmers on the Canadian prairies are interested in including legume cover crops in their cropping systems to reduce fertilizer inputs and improve farm sustainability. A field study was conducted to determine the merits of establishing alfalfa (Medicago sativa L.), red clover (Trifolium pratense L.) or Austrian winter pea (Pisum sativum L.) cover crops in fall or in spring with winter wheat (Triticum aestivum L.). Spring-planted legumes emerged well within the winter wheat crop, but their growth was limited under these semi-arid conditions. Fall-planted red clover had low plant densities following winter in two of three experiments and fall-planted winter pea reduced winter wheat yield by 23 to 37% compared with the no cover crop control. In contrast, fall-planted alfalfa exhibited good winterhardiness, provided some weed suppression without reducing winter wheat yield, caused only a slight reduction in soil water content, and contributed an extra 18 to 20 kg ha-1 of available soil N at the time of seeding the following spring crop. Additionally, fall-planted alfalfa increased the yield of succeeding canola (Brassica napus L.) in unfertilized plots in two of three experiments. Further research is warranted to better understand the agronomic and economic benefits of alfalfa-winter wheat intercrops under a wider range of environmental conditions.Key words: Cover crops, intercropping, relay crops, soil nitrogen, soil conservation


1996 ◽  
Vol 126 (4) ◽  
pp. 471-479 ◽  
Author(s):  
C. M. Knott

SUMMARYExperiments were designed to assess the effects of cover crops, compared with bare stubble, on the establishment and yield of a following crop of vining peas sown in March. The cover crops of winter wheat (to simulate self-sown wheat) or winter rye, and bare stubble, were ploughed in on different dates: 1 December, 1 February or 1 March. Cover crops were destroyed with or without the use of herbicide. The three experiments in 1990/91, 1991/92 and 1992/93 were sited on a free-draining, sandy loam soil at Thornhaugh, Cambridgeshire.The cover crops, sown as soon as possible in September following a winter wheat crop, had low dry matter (DM) production and nitrogen uptake in the dry autumns of 1990 and 1991, but in the third experiment (1992/93), autumn rainfall was higher than the long-term average and DM production and N uptake were greater. Cover crops reduced the overwinter soil mineral nitrogen (SMN) content in all 3 years compared with bare stubble. However, in spring, SMN increased where cover crops had been incorporated, due to the mineralization of the cover crop residues. Rye captured more nitrogen than wheat.Vining pea vigour and maturity at quick-freezing harvest stage were not affected by cover crop, destruction date or method in any of the three seasons.On the light soil, satisfactory seedbeds were achieved after ploughing at all three timings for experiments in 1990/91 and 1992/93 and vining pea yields were not reduced by cover crops or by destruction date or method. However, delayed ploughing in February and March in the 1991/92 experiment resulted in lower vining pea yields compared with ploughing in December. This was due to poor seedbeds after late ploughing rather than cover crop, stubble treatment or method of destruction.


Agriculture ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 218
Author(s):  
Cameron M. Ogilvie ◽  
Waqar Ashiq ◽  
Hiteshkumar B. Vasava ◽  
Asim Biswas

Plant roots are an integral part of soil ecosystems and contribute to various services, including carbon and nutrient cycling, weathering, and soil formation. They also modify soil physical properties (e.g., soil water content, pore size distribution, and bulk density) and impact subsequent crops’ growth. Cover crops have been reported to improve soil and environmental quality by reducing nutrient losses, improving soil water content, and increasing soil organic matter. Understanding the complex interactions between cover crop roots and soil (RS) is of utmost importance. However, cover crop RS interactions have not been critically reviewed. In this article, we investigated the nature of cover crop physical RS interactions and explored the emerging technologies for their study. We also assessed technologies that may be readily applied to the study of physical RS interactions in cover crop systems and discussed ways to improve related research in the future.


Agriculture ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 441
Author(s):  
Hans J. Kandel ◽  
Dulan P. Samarappuli ◽  
Kory L. Johnson ◽  
Marisol T. Berti

Adoption of cover crop interseeding in the northwestern Corn Belt in the USA is limited due to inadequate fall moisture for establishment, short growing season, additional costs, and need for adapted winter-hardy species. This study evaluated three cover crop treatments—no cover crop, winter rye (Secale cereale L.), and winter camelina (Camelina sativa (L.) Crantz)—which were interseeded at the R6 soybean growth stage, using two different soybean (Glycine max (L.) Merr.) maturity groups (0.5 vs. 0.9) and two row spacings (30.5 vs. 61 cm). The objective was to evaluate these treatments on cover crop biomass, soil cover, plant density, and soybean yield. Spring wheat (Triticum aestivum L.) grain yield was also measured the following year. The early-maturing soybean cultivar (0.5 maturity) resulted in increased cover crop biomass and soil cover, with winter rye outperforming winter camelina. However, the early-maturing soybean yielded 2308 kg·ha−1, significantly less compared with the later maturing cultivar (2445 kg·ha−1). Narrow row spacing had higher soybean yield, but row spacing did not affect cover crop growth. Spring wheat should not follow winter rye if rye is terminated right before seeding the wheat. However, wheat planted after winter camelina was no different than when no cover crop was interseeded in soybean. Interseeding cover crops into established soybean is possible, however, cover crop biomass accumulation and soil cover are limited.


Sign in / Sign up

Export Citation Format

Share Document