scholarly journals Precision Radial Velocities in the Near Infrared with TEDI

2008 ◽  
Vol 4 (S253) ◽  
pp. 157-161 ◽  
Author(s):  
James P. Lloyd ◽  
Agnieszka Czeszumska ◽  
Jerry Edelstein ◽  
David Erskine ◽  
Michael Feuerstein ◽  
...  

AbstractThe TEDI (TripleSpec - Exoplanet Discovery Instrument) is a dedicated instrument for the near-infrared radial velocity search for planetary companions to low-mass stars with the goal of achieving meters-per-second radial velocity precision. Heretofore, such planet searches have been limited almost entirely to the optical band and to stars that are bright in this band. Consequently, knowledge about planetary companions to the populous but visibly faint low-mass stars is limited. In addition to the opportunity afforded by precision radial velocity searches directly for planets around low mass stars, transits around the smallest M dwarfs offer a chance to detect the smallest possible planets in the habitable zones of the parent stars. As has been the the case with followup of planet candidates detected by the transit method requiring radial velocity confirmation, the capability to undertake efficient precision radial velocity measurements of mid-late M dwarfs will be required. TEDI has been commissioned on the Palomar 200” telescope in December 2007, and is currently in a science verification phase.

2012 ◽  
Vol 8 (S293) ◽  
pp. 201-203
Author(s):  
Masashi Omiya ◽  
Bun'ei Sato ◽  
Hiroki Harakawa ◽  
Masayuki Kuzuhara ◽  
Teruyuki Hirano ◽  
...  

AbstractWe have a plan to conduct a Doppler planet search for low-mass planets around nearby middle-to-late M dwarfs using IRD. IRD is the near-infrared high-precision radial velocity instrument for the Subaru 8.2-m telescope. We expect to achieve the accuracy of the radial velocity measurements of 1 m/s using IRD with a frequency comb as a wavelengh calibrator. Thus, we would detect super-Earths in habitable zone and low-mass rocky planets in close-in orbits around late-M dwarfs. In this survey, we aim to understand and discuss statistical properties of low-mass planets around low-mass M dwarfs compared with those derived from theoretical simulations.


Geosciences ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 289 ◽  
Author(s):  
Serena Benatti

Exoplanet research has shown an incessant growth since the first claim of a hot giant planet around a solar-like star in the mid-1990s. Today, the new facilities are working to spot the first habitable rocky planets around low-mass stars as a forerunner for the detection of the long-awaited Sun-Earth analog system. All the achievements in this field would not have been possible without the constant development of the technology and of new methods to detect more and more challenging planets. After the consolidation of a top-level instrumentation for high-resolution spectroscopy in the visible wavelength range, a huge effort is now dedicated to reaching the same precision and accuracy in the near-infrared. Actually, observations in this range present several advantages in the search for exoplanets around M dwarfs, known to be the most favorable targets to detect possible habitable planets. They are also characterized by intense stellar activity, which hampers planet detection, but its impact on the radial velocity modulation is mitigated in the infrared. Simultaneous observations in the visible and near-infrared ranges appear to be an even more powerful technique since they provide combined and complementary information, also useful for many other exoplanetary science cases.


2003 ◽  
Vol 211 ◽  
pp. 413-416 ◽  
Author(s):  
D. Ségransan ◽  
X. Delfosse ◽  
T. Forveille ◽  
J.L. Beuzit ◽  
C. Perrier ◽  
...  

We present new accurate masses at the bottom of the main sequence as well as an improved empirical mass-luminosity relation for very low mass stars in the visible and near infrared. Masses were obtained by combining very accurate radial velocities and adaptive optics images of multiple stars obtained at different orbital phases.


2016 ◽  
Vol 128 (968) ◽  
pp. 104501 ◽  
Author(s):  
Peter Gao ◽  
Plavchan P. ◽  
Gagné J. ◽  
Furlan E. ◽  
Bottom M. ◽  
...  

2020 ◽  
Vol 494 (1) ◽  
pp. 62-68 ◽  
Author(s):  
Jinhee Lee ◽  
Inseok Song ◽  
Simon Murphy

ABSTRACT We report the discovery of the oldest (∼55 Myr) mid-M type star known to host ongoing accretion. 2MASS J15460752–6258042 (2M1546, spectral type M5, 59.2 pc) shows spectroscopic signs of accretion such as strong H α, He i, and [O i] emission lines, from which we estimate an accretion rate of ∼10−10 M⊙ yr−1. Considering the clearly detected infrared excess in all WISE bands, the shape of its spectral energy distribution (SED) and its age, we believe that the star is surrounded by a transitional disc, clearly with some gas still present at inner radii. The position and kinematics of the star from Gaia DR2 and our own radial-velocity measurements suggest membership in the nearby ∼55 Myr-old Argus moving group. At only 59 pc from Earth, 2M1546 is one of the nearest accreting mid-M dwarfs, making it an ideal target for studying the upper limit on the lifetimes of gas-rich discs around low-mass stars.


1980 ◽  
Vol 85 ◽  
pp. 243-244
Author(s):  
M. Mayor ◽  
J. C. Mermilliod

Stars with spectral types later than or equal to F5V in the Coma Ber cluster have been measured from 1977 to 1979 with the spectrometer CORAVEL (A. Baranne et al. 1980). The aims of this investigation were to clarify the membership based on radial velocity for some faint stars, to study the binarity of the low mass stars of the cluster, and to obtain the distribution of the rotational velocities for the red dwarfs. 391 measurements have been made for 34 stars. The average dispersion over the mean VR of each star is 0.6 kms−1.


2018 ◽  
Vol 612 ◽  
pp. A49 ◽  
Author(s):  
A. Reiners ◽  
M. Zechmeister ◽  
J. A. Caballero ◽  
I. Ribas ◽  
J. C. Morales ◽  
...  

The CARMENES radial velocity (RV) survey is observing 324 M dwarfs to search for any orbiting planets. In this paper, we present the survey sample by publishing one CARMENES spectrum for each M dwarf. These spectra cover the wavelength range 520–1710 nm at a resolution of at least R >80 000, and we measure its RV, Hα emission, and projected rotation velocity. We present an atlas of high-resolution M-dwarf spectra and compare the spectra to atmospheric models. To quantify the RV precision that can be achieved in low-mass stars over the CARMENES wavelength range, we analyze our empirical information on the RV precision from more than 6500 observations. We compare our high-resolution M-dwarf spectra to atmospheric models where we determine the spectroscopic RV information content, Q, and signal-to-noise ratio. We find that for all M-type dwarfs, the highest RV precision can be reached in the wavelength range 700–900 nm. Observations at longer wavelengths are equally precise only at the very latest spectral types (M8 and M9). We demonstrate that in this spectroscopic range, the large amount of absorption features compensates for the intrinsic faintness of an M7 star. To reach an RV precision of 1 m s−1 in very low mass M dwarfs at longer wavelengths likely requires the use of a 10 m class telescope. For spectral types M6 and earlier, the combination of a red visual and a near-infrared spectrograph is ideal to search for low-mass planets and to distinguish between planets and stellar variability. At a 4 m class telescope, an instrument like CARMENES has the potential to push the RV precision well below the typical jitter level of 3–4 m s−1.


Author(s):  
Hugh R. A. Jones ◽  
John Barnes ◽  
Mikko Tuomi ◽  
James S. Jenkins ◽  
Guillem Anglada-Escude

Our current view of exoplanets is one derived primarily from solar-like stars with a strong focus on understanding our Solar System. Our knowledge about the properties of exoplanets around the dominant stellar population by number, the so-called low-mass stars or M dwarfs, is much more cursory. Based on radial velocity discoveries, we find that the semi-major axis distribution of M dwarf planets appears to be broadly similar to those around more massive stars and thus formation and migration processes might be similar to heavier stars. However, we find that the mass of M dwarf planets is relatively much lower than the expected mass dependency based on stellar mass and thus infer that planet formation efficiency around low-mass stars is relatively impaired. We consider techniques to overcome the practical issue of obtaining good quality radial velocity data for M dwarfs despite their faintness and sustained activity and emphasize (i) the wavelength sensitivity of radial velocity signals, (ii) the combination of radial velocity data from different experiments for robust detection of small amplitude signals, and (iii) the selection of targets and radial velocity interpretation of late-type M dwarfs should consider H α behaviour.


2016 ◽  
Vol 822 (1) ◽  
pp. 40 ◽  
Author(s):  
Jonathan Gagné ◽  
Peter Plavchan ◽  
Peter Gao ◽  
Guillem Anglada-Escude ◽  
Elise Furlan ◽  
...  

2019 ◽  
Vol 627 ◽  
pp. A49 ◽  
Author(s):  
M. Zechmeister ◽  
S. Dreizler ◽  
I. Ribas ◽  
A. Reiners ◽  
J. A. Caballero ◽  
...  

Context. Teegarden’s Star is the brightest and one of the nearest ultra-cool dwarfs in the solar neighbourhood. For its late spectral type (M7.0 V), the star shows relatively little activity and is a prime target for near-infrared radial velocity surveys such as CARMENES. Aims. As part of the CARMENES search for exoplanets around M dwarfs, we obtained more than 200 radial-velocity measurements of Teegarden’s Star and analysed them for planetary signals. Methods. We find periodic variability in the radial velocities of Teegarden’s Star. We also studied photometric measurements to rule out stellar brightness variations mimicking planetary signals. Results. We find evidence for two planet candidates, each with 1.1 M⊕ minimum mass, orbiting at periods of 4.91 and 11.4 d, respectively. No evidence for planetary transits could be found in archival and follow-up photometry. Small photometric variability is suggestive of slow rotation and old age. Conclusions. The two planets are among the lowest-mass planets discovered so far, and they are the first Earth-mass planets around an ultra-cool dwarf for which the masses have been determined using radial velocities.


Sign in / Sign up

Export Citation Format

Share Document