scholarly journals Quasar Mass Functions Across Cosmic Time

2009 ◽  
Vol 5 (S267) ◽  
pp. 239-247
Author(s):  
Marianne Vestergaard

AbstractI present mass functions of actively accreting black holes detected in different quasar surveys which in concert cover a wide range of cosmic history. I briefly address what we learn from these mass functions. I summarize the motivation for such a study and the methods by which we determine black hole masses.

Author(s):  
Joaquín Sureda ◽  
Juan Magaña ◽  
Ignacio J Araya ◽  
Nelson D Padilla

Abstract We present a modification of the Press-Schechter (PS) formalism to derive general mass functions for primordial black holes (PBHs), considering their formation as being associated to the amplitude of linear energy density fluctuations. To accommodate a wide range of physical relations between the linear and non-linear conditions for collapse, we introduce an additional parameter to the PS mechanism, and that the collapse occurs at either a given cosmic time, or as fluctuations enter the horizon. We study the case where fluctuations obey Gaussian statistics and follow a primordial power spectrum of broken power-law form with a blue spectral index for small scales. We use the observed abundance of super-massive black holes (SMBH) to constrain the extended mass functions taking into account dynamical friction. We further constrain the modified PS by developing a method for converting existing constraints on the PBH mass fraction, derived assuming monochromatic mass distributions for PBHs, into constraints applicable for extended PBH mass functions. We find that when considering well established monochromatic constraints there are regions in parameter space where all the dark matter can be made of PBHs. Of special interest is the region for the characteristic mass of the distribution ∼102 M⊙, for a wide range of blue spectral indices in the scenario where PBHs form as they enter the horizon, where the linear threshold for collapse is of the order of the typical overdensities, as this is close to the black hole masses detected by LIGO which are difficult to explain by stellar collapse.


2002 ◽  
Vol 184 ◽  
pp. 335-342
Author(s):  
Richard F. Green

AbstractHigh angular resolution observations from WFPC and STIS now allow well-constrained dynamical measurement of the masses of supermassive black holes (SMBH) in nearby galaxies. An initial statistical analysis by Magorrian et al. showed that 97% of bulges host SMBH. Black hole mass is correlated moderately with bulge luminosity and strongly with the velocity dispersion of the whole bulge, suggesting that black hole formation may be an intrinsic aspect of bulge formation. Black hole masses for AGN determined from reverberation mapping fall on the same relationship with bulge velocity dispersion as those determined from stellar dynamical measurements. The prospect is therefore that the large-scale distribution of black hole masses in distant quasars may be determined through relatively straightforward measurement. Integral constraints show consistency between the total AGN luminosity density and the total volume density in SMBH contained in galaxy bulges. The strong peak of the high-luminosity quasar luminosity function at early cosmic time is consistent with the association of the build-up of SMBH through accretion and bulge formation. Alternate scenarios requiring substantial build-up of the most massive black holes at later cosmic times are more difficult to reconcile with the evolution of the LF.


2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Brandon C. Kelly ◽  
Andrea Merloni

The black hole mass function of supermassive black holes describes the evolution of the distribution of black hole mass. It is one of the primary empirical tools available for mapping the growth of supermassive black holes and for constraining theoretical models of their evolution. In this paper, we discuss methods for estimating the black hole mass function, including their advantages and disadvantages. We also review the results of using these methods for estimating the mass function of both active and inactive black holes. In addition, we review current theoretical models for the growth of supermassive black holes that predict the black hole mass function. We conclude with a discussion of directions for future research which will lead to improvement in both empirical and theoretical determinations of the mass function of supermassive black holes.


2020 ◽  
Vol 636 ◽  
pp. A20 ◽  
Author(s):  
Łukasz Wyrzykowski ◽  
Ilya Mandel

Context. Gravitational microlensing is sensitive to compact-object lenses in the Milky Way, including white dwarfs, neutron stars, or black holes, and could potentially probe a wide range of stellar-remnant masses. However, the mass of the lens can be determined only in very limited cases, due to missing information on both source and lens distances and their proper motions. Aims. Our aim is to improve the mass estimates in the annual parallax microlensing events found in the eight years of OGLE-III observations towards the Galactic Bulge with the use of Gaia Data Release 2 (DR2). Methods. We use Gaia DR2 data on distances and proper motions of non-blended sources and recompute the masses of lenses in parallax events. We also identify new events in that sample which are likely to have dark lenses; the total number of such events is now 18. Results. The derived distribution of masses of dark lenses is consistent with a continuous distribution of stellar-remnant masses. A mass gap between neutron star and black hole masses in the range between 2 and 5 solar masses is not favoured by our data, unless black holes receive natal kicks above 20−80 km s−1. We present eight candidates for objects with masses within the putative mass gap, including a spectacular multi-peak parallax event with mass of 2.4−1.3+1.9 M⊙ located just at 600 pc. The absence of an observational mass gap between neutron stars and black holes, or conversely the evidence of black hole natal kicks if a mass gap is assumed, can inform future supernova modelling efforts.


2009 ◽  
Vol 5 (S267) ◽  
pp. 151-160 ◽  
Author(s):  
Bradley M. Peterson

AbstractWe review briefly direct and indirect methods of measuring the masses of black holes in galactic nuclei, and then focus attention on supermassive black holes in active nuclei, with special attention to results from reverberation mapping and their limitations. We find that the intrinsic scatter in the relationship between the AGN luminosity and the broad-line region size is very small, ~0.11 dex, comparable to the uncertainties in the better reverberation measurements. We also find that the relationship between reverberation-based black hole masses and host-galaxy bulge luminosities also seems to have surprisingly little intrinsic scatter, ~0.17 dex. We note, however, that there are still potential systematics that could affect the overall mass calibration at the level of a factor of a few.


2019 ◽  
Vol 493 (1) ◽  
pp. 1500-1511 ◽  
Author(s):  
Francesco Shankar ◽  
David H Weinberg ◽  
Christopher Marsden ◽  
Philip J Grylls ◽  
Mariangela Bernardi ◽  
...  

ABSTRACT The masses of supermassive black holes at the centres of local galaxies appear to be tightly correlated with the mass and velocity dispersions of their galactic hosts. However, the local Mbh–Mstar relation inferred from dynamically measured inactive black holes is up to an order-of-magnitude higher than some estimates from active black holes, and recent work suggests that this discrepancy arises from selection bias on the sample of dynamical black hole mass measurements. In this work, we combine X-ray measurements of the mean black hole accretion luminosity as a function of stellar mass and redshift with empirical models of galaxy stellar mass growth, integrating over time to predict the evolving Mbh–Mstar relation. The implied relation is nearly independent of redshift, indicating that stellar and black hole masses grow, on average, at similar rates. Matching the de-biased local Mbh–Mstar relation requires a mean radiative efficiency ε ≳ 0.15, in line with theoretical expectations for accretion on to spinning black holes. However, matching the ‘raw’ observed relation for inactive black holes requires ε ∼ 0.02, far below theoretical expectations. This result provides independent evidence for selection bias in dynamically estimated black hole masses, a conclusion that is robust to uncertainties in bolometric corrections, obscured active black hole fractions, and kinetic accretion efficiency. For our fiducial assumptions, they favour moderate-to-rapid spins of typical supermassive black holes, to achieve ε ∼ 0.12–0.20. Our approach has similarities to the classic Soltan analysis, but by using galaxy-based data instead of integrated quantities we are able to focus on regimes where observational uncertainties are minimized.


2019 ◽  
Vol 491 (4) ◽  
pp. 4973-4992
Author(s):  
C DeGraf ◽  
D Sijacki

ABSTRACT We study how statistical properties of supermassive black holes depend on the frequency and conditions for massive seed formation in cosmological simulations of structure formation. We develop a novel method to recalculate detailed growth histories and merger trees of black holes within the framework of the Illustris simulation for several seed formation models, including a physically motivated model where black hole seeds only form in progenitor galaxies that conform to the conditions for direct collapse black hole formation. While all seed models considered here are in a broad agreement with present observational constraints on black hole populations from optical, UV, and X-ray studies, we find that they lead to widely different black hole number densities and halo occupation fractions, which are currently observationally unconstrained. In terms of future electromagnetic spectrum observations, the faint-end quasar luminosity function and the low-mass-end black hole–host galaxy scaling relations are very sensitive to the specific massive seed prescription. Specifically, the direct collapse model exhibits a seeding efficiency that decreases rapidly with cosmic time and produces much fewer black holes in low-mass galaxies, in contrast to the original Illustris simulation. We further find that the total black hole merger rate varies by more than one order of magnitude for different seed models, with the redshift evolution of the chirp mass changing as well. Supermassive black hole merger detections with LISA and International Pulsar Timing Array may hence provide the most direct means of constraining massive black hole seed formation in the early Universe.


2006 ◽  
Vol 2 (S238) ◽  
pp. 241-246
Author(s):  
Sachiko Tsuruta ◽  
Takuya Ohkubo ◽  
Hideyuki Umeda ◽  
Keiichi Maeda ◽  
Ken'ichi Nomoto ◽  
...  

AbstractWe calculate evolution, collapse, explosion, and nucleosynthesis of Population III very massive stars with 500 M⊙ and 1000 M⊙. It was found that both 500 M⊙ and 1000 M⊙ models enter the region of pair-instability but continue to undergo core collapse to black holes. For moderately aspherical explosions, the patterns of nucleosynthesis match the observational data of intergalactic and intercluster medium and hot gases in M82, better than models involving hypernovae and pair instability supernovae.Our results suggest that explosions of Population III core-collapse very massive stars contribute significantly to the chemical evolution of gases in clusters of galaxies. The final black hole masses are about 500 M⊙ for our most massive 1000 M⊙ models. This result may support the view that Population III very massive stars are responsible for the origin of intermediate mass black holes which were recently reported to be discovered.


2010 ◽  
Vol 402 (4) ◽  
pp. 2441-2452 ◽  
Author(s):  
R. Decarli ◽  
R. Falomo ◽  
A. Treves ◽  
J. K. Kotilainen ◽  
M. Labita ◽  
...  

2020 ◽  
pp. 200-258
Author(s):  
Piotr T. Chruściel

In previous chapters we presented the key notions associated with stationary black-hole spacetimes, as well as the minimal set of metrics needed to illustrate the basic features of the world of black holes. In this chapter we present some further black holes, selected because of their physical and mathematical interest. We start, in Section 5.1, with the Kerr–de Sitter/anti-de Sitter metrics, the cosmological counterparts of the Kerr metrics. Section 5.2 contains a description of the Kerr–Newman–de Sitter/anti-de Sitter metrics, which are the charged relatives of the metrics presented in Section 5.1. In Section 5.3 we analyse in detail the global structure of the Emparan–Reall ‘black rings’: these are five-dimensional black-hole spacetimes with R × S 1 × S 2-horizon topology. The Rasheed metrics of Section 5.4 provide an example of black holes arising in Kaluza–Klein theories. The Birmingham family of metrics, presented in Section 5.5, forms the most general class known of explicit static vacuum metrics with cosmological constant in all dimensions, with a wide range of horizon topologies.


Sign in / Sign up

Export Citation Format

Share Document