scholarly journals Identification of Class I Methanol Masers with Objects of Near and Mid-Infrared Bands and the Third Version of the Class I Methanol Maser (MMI) Catalog

2012 ◽  
Vol 8 (S287) ◽  
pp. 280-281
Author(s):  
Olga Bayandina ◽  
Irina Val'tts ◽  
Grigorii Larionov

AbstractAn identification has been conducted of class I methanol masers with 1) short-wave infrared objects EGO (extended green objects) - tracer bipolar outflow of matter in young stellar objects, and 2) isolated pre-protostellar gas-dust cores of the interstellar medium which are observed in absorption in the mid-infrared in the Galactic plane. It is shown that more than 50% of class I methanol masers are identified with bipolar outflows, considering the EGO as bipolar outflows (as compared with the result of 22% in the first version of the MMI catalog that contains no information about EGO). 99 from 139 class I methanol masers (71%) are identified with SDC. Thus, it seems possible that the MMI can be formed in isolated self-gravitating condensations, which are the silhouette of dark clouds - IRDC and SDC.

2004 ◽  
Vol 82 (6) ◽  
pp. 740-743 ◽  
Author(s):  
P A Feldman ◽  
R O Redman ◽  
L W Avery ◽  
J Di Francesco ◽  
J D Fiege ◽  
...  

The line profiles of dense cores in infrared-dark clouds indicate the presence of young stellar objects (YSOs), but the youth of the YSOs and the large distances to the clouds make it difficult to distinguish the outflows that normally accompany star formation from turbulence within the cloud. We report here the first unambiguous identification of a bipolar outflow from a young stellar object (YSO) in an infrared-dark cloud, using observations of SiO to distinguish the relatively small amounts of gas in the outflow from the rest of the ambient cloud. Key words: infrared-dark clouds, star formation, bipolar outflows, SiO, G81.56+0.10.


2009 ◽  
Vol 5 (H15) ◽  
pp. 787-787
Author(s):  
Ed Churchwell

AbstractThe Spitzer mid-infrared (MIR) surveys, Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) and MIPSGAL have revealed a new view of the disk of the Milky Way. Hallmarks of the Galactic disk at MIR wavelengths with spatial resolution <2″ are bubbles/HII regions, infrared dark clouds, young stellar objects (YSOs)/star formation regions, diffuse dust and extended polycyclic aromatic hydrocarbons (PAHs), and more than 100 million publically available archived stars with measured flux densities at 7 wavelengths and positions accurate to 0.1″. At mid-IR wavelengths, the cool components in the Galaxy are preferentially bright and highlight physical processes that are not obvious at other wavelength regimes.


2012 ◽  
Vol 8 (S287) ◽  
pp. 284-285 ◽  
Author(s):  
Do-Young Byun ◽  
Kee-Tae Kim ◽  
Jae-Han Bae

AbstractThe Class II 6.7-GHz methanol maser is a tracer of high mass young stellar objects. We present results of a 44-GHz class I methanol maser and 22-GHz water maser survey using the KVN (Korean VLBI Network) 21-m single dish radio telescopes towards 284 6.7-GHz maser sites. Class I methanol maser and water maser emission is detected towards 116 (41%) and 136 (48%) sources, respectively. About 50 sources have a peak flux density higher than 10 Jy at 44-GHz. They are candidates for VLBI studies using the KVN.


2020 ◽  
Vol 493 (2) ◽  
pp. 2015-2041 ◽  
Author(s):  
B M Jones ◽  
G A Fuller ◽  
S L Breen ◽  
A Avison ◽  
J A Green ◽  
...  

ABSTRACT The Methanol MultiBeam survey (MMB) provides the most complete sample of Galactic massive young stellar objects (MYSOs) hosting 6.7 GHz class II methanol masers. We characterize the properties of these maser sources using dust emission detected by the Herschel Infrared Galactic Plane Survey (Hi-GAL) to assess their evolutionary state. Associating 731 (73 per cent) of MMB sources with compact emission at four Hi-GAL wavelengths, we derive clump properties and define the requirements of an MYSO to host a 6.7 GHz maser. The median far-infrared (FIR) mass and luminosity are 630 M⊙ and 2500 L⊙ for sources on the near side of Galactic centre and 3200 M⊙ and 10000 L⊙ for more distant sources. The median luminosity-to-mass ratio is similar for both at ∼4.2 L⊙  M⊙−1. We identify an apparent minimum 70 μm luminosity required to sustain a methanol maser of a given luminosity (with $L_{70} \propto L_{6.7}\, ^{0.6}$). The maser host clumps have higher mass and higher FIR luminosities than the general Galactic population of protostellar MYSOs. Using principal component analysis, we find 896 protostellar clumps satisfy the requirements to host a methanol maser but lack a detection in the MMB. Finding a 70 μm flux density deficiency in these objects, we favour the scenario in which these objects are evolved beyond the age where a luminous 6.7 GHz maser can be sustained. Finally, segregation by association with secondary maser species identifies evolutionary differences within the population of 6.7GHz sources.


1987 ◽  
Vol 115 ◽  
pp. 213-237 ◽  
Author(s):  
Ronald L. Snell

A wealth of data is now available on the energetic mass outflows that are associated with young stellar objects. This phenomenon is thought to occur at a very early stage in the evolution of stars of almost all masses. The discovery of this energetic event was first made through observations of the rapidly expanding molecular gas that surrounds many of these young stellar objects. A review of the physical properties, including the energetics and morphology, of the expanding molecular gas is presented in this paper. In addition, the role these energetic winds play in affecting the dynamics of the parental molecular clouds is also discussed. Finally, the results of detailed studies of the structure and kinematics of the high velocity molecular gas are reviewed and the evidence for existance of wind-swept cavities and molecular shells within the clouds are presented.


2018 ◽  
Vol 617 ◽  
pp. A67 ◽  
Author(s):  
M. R. Samal ◽  
L. Deharveng ◽  
A. Zavagno ◽  
L. D. Anderson ◽  
S. Molinari ◽  
...  

Aims. We aim to identify bipolar Galactic H II regions and to understand their parental cloud structures, morphologies, evolution, and impact on the formation of new generations of stars. Methods. We use the Spitzer-GLIMPSE, Spitzer-MIPSGAL, and Herschel-Hi-GAL surveys to identify bipolar H II regions and to examine their morphologies. We search for their exciting star(s) using NIR data from the 2MASS, UKIDSS, and VISTA surveys. Massive molecular clumps are detected near these bipolar nebulae, and we estimate their temperatures, column densities, masses, and densities. We locate Class 0/I young stellar objects (YSOs) in their vicinities using the Spitzer and Herschel-PACS emission. Results. Numerical simulations suggest bipolar H II regions form and evolve in a two-dimensional flat- or sheet-like molecular cloud. We identified 16 bipolar nebulae in a zone of the Galactic plane between ℓ ± 60° and |b| < 1°. This small number, when compared with the 1377 bubble H II regions in the same area, suggests that most H II regions form and evolve in a three-dimensional medium. We present the catalogue of the 16 bipolar nebulae and a detailed investigation for six of these. Our results suggest that these regions formed in dense and flat structures that contain filaments. We find that bipolar H II regions have massive clumps in their surroundings. The most compact and massive clumps are always located at the waist of the bipolar nebula, adjacent to the ionised gas. These massive clumps are dense, with a mean density in the range of 105 cm−3 to several 106 cm−3 in their centres. Luminous Class 0/I sources of several thousand solar luminosities, many of which have associated maser emission, are embedded inside these clumps. We suggest that most, if not all, massive 0/I YSO formation has probably been triggered by the expansion of the central bipolar nebula, but the processes involved are still unknown. Modelling of such nebula is needed to understand the star formation processes at play.


2003 ◽  
Vol 126 (5) ◽  
pp. 2411-2420 ◽  
Author(s):  
C. L. Barbosa ◽  
A. Damineli ◽  
R. D. Blum ◽  
P. S. Conti

Sign in / Sign up

Export Citation Format

Share Document