scholarly journals Mutual influence of magnetic field decay and thermal evolution of rotational neutron stars

2012 ◽  
Vol 8 (S291) ◽  
pp. 586-588
Author(s):  
Xia Zhou ◽  
Miao Kang ◽  
Na Wang

AbstractThe effect of magnetic field decay on the chemical heating and thermal evolution of neutron stars is discussed. Our main goal is to study how chemical heating mechanisms and thermal evolution are changed by field decay and how magnetic field decay is modified by the thermal evolution. We show that the effect of chemical heating is suppressed by the star spin-down through decaying magnetic field at a later stage; magnetic field decay is delayed significantly relative to stars cooling without heating mechanisms; compared to typical chemical heating, the decay of the magnetic field can even cause the temperature to turn down at a later stage.

2004 ◽  
Vol 218 ◽  
pp. 41-44 ◽  
Author(s):  
Joeri van Leeuwen ◽  
Frank Verbunt

Several recent papers conclude that radio-pulsar magnetic fields decay on a time-scale of 10 Myr, apparently contradicting earlier results. We have implemented the methods of these papers in our code and show that this preference for rapid field decay is caused by the assumption that the beaming fraction does not depend on the period. When we do include this dependence, we find that the observed pulsar properties are reproduced best when the modeled field does not decay. When we assume that magnetic fields of new-born neutron stars are from a distribution sufficiently wide to explain magnetars, the magnetic field and period distributions we predict for radio are pulsars wider than observed. Finally we find that the observed velocities overestimate the intrinsic velocity distribution.


2012 ◽  
Vol 8 (S290) ◽  
pp. 109-112
Author(s):  
Michał Bejger ◽  
Morgane Fortin ◽  
Paweł Haensel ◽  
J. Leszek Zdunik

AbstractRecent measurement of a high millisecond pulsar mass (PSR J1614-2230, 1.97± 0.04 M⊙) compared with the low mass of PSR J0751+1807 (1.26± 0.14 M⊙) indicates a large span of masses of recycled pulsars and suggests a broad range of neutron stars masses at birth. We aim at reconstructing the pre-accretion masses for these pulsars while taking into account interaction of the magnetic field with a thin accretion disk, magnetic field decay and relativistic 2D solutions for stellar configurations for a set of equations of state. We briefly discuss the evolutionary scenarios leading to the formation of these neutron stars and study the influence of the equation of state.


2010 ◽  
Vol 6 (S275) ◽  
pp. 309-310
Author(s):  
Federico García ◽  
Deborah N. Aguilera ◽  
Gustavo E. Romero

AbstractAccreting neutron stars can produce jets only if they are weakly magnetized (B ~ 108 G). On the other hand, neutron stars are compact objects born with strong surface magnetic fields (B ~ 1012 G). In this work we study the conditions for jet formation in a binary system formed by a neutron star and a massive donor star once the magnetic field has decayed due to accretion. We solve the induction equation for the magnetic field diffusion in a realistic neutron star crust and discuss the possibility of jet launching in systems like the recently detected Supergiant Fast X-ray Transients.


Author(s):  
José A. Pons ◽  
Daniele Viganò

AbstractThe strong magnetic field of neutron stars is intimately coupled to the observed temperature and spectral properties, as well as to the observed timing properties (distribution of spin periods and period derivatives). Thus, a proper theoretical and numerical study of the magnetic field evolution equations, supplemented with detailed calculations of microphysical properties (heat and electrical conductivity, neutrino emission rates) is crucial to understand how the strength and topology of the magnetic field vary as a function of age, which in turn is the key to decipher the physical processes behind the varied neutron star phenomenology. In this review, we go through the basic theory describing the magneto-thermal evolution models of neutron stars, focusing on numerical techniques, and providing a battery of benchmark tests to be used as a reference for present and future code developments. We summarize well-known results from axisymmetric cases, give a new look at the latest 3D advances, and present an overview of the expectations for the field in the coming years.


2012 ◽  
Vol 8 (S291) ◽  
pp. 425-427
Author(s):  
Yasufumi Kojima

AbstractDynamics of magnetic field decay is numerically studied. For neutron stars with strong magnetic fields, the Hall drift timescale in their crust is very short, and therefore the evolution is significantly affected. The nonlinear coupling between poloidal and toroidal components of the magnetic field is studied. It is also found that the polar field at the surface is highly distorted during the Hall drift timescale. For example, polar dipole field-strength temporarily decreases not by dissipation but by advection. This fact suggests that the dipole field-strength is not sufficient to determine the border between pulsars and magnetars.


2012 ◽  
Vol 8 (S291) ◽  
pp. 408-410
Author(s):  
Andrei P. Igoshev ◽  
Alexander F. Kholtygin

AbstractUsing the data of the ATNF pulsar catalog we study the relation connected the real age t of young neutron stars (NS) and their spin-down age τ. We suppose that this relation is independent from both initial period of the NS and its initial surface magnetic field, and that the laws of the surface magnetic field decay are similar for all NSs in the Milky Way. We further assume that the birth-rate of pulsars was constant during at least last 200 million years. With these assumptions we were able to restore the history of the magnetic field decay for the galactic NSs. We reconstruct the universal function f(t) = B(t)/B0, where B0 is the initial magnetic field and B(t) is the magnetic field of NS at the age t. The function f(t) can be fitted by a power law with power index α = −1.17.


2000 ◽  
Vol 177 ◽  
pp. 699-702 ◽  
Author(s):  
E. V. Gotthelf ◽  
G. Vasisht

AbstractWe propose a simple explanation for the apparent dearth of radio pulsars associated with young supernova remnants (SNRs). Recent X-ray observations of young remnants have revealed slowly rotating (P∼ 10s) central pulsars with pulsed emission above 2 keV, lacking in detectable radio emission. Some of these objects apparently have enormous magnetic fields, evolving in a manner distinct from the Crab pulsar. We argue that these X-ray pulsars can account for a substantial fraction of the long sought after neutron stars in SNRs and that Crab-like pulsars are perhaps the rarer, but more highly visible example of these stellar embers. Magnetic field decay likely accounts for their high X-ray luminosity, which cannot be explained as rotational energy loss, as for the Crab-like pulsars. We suggest that the natal magnetic field strength of these objects control their subsequent evolution. There are currently almost a dozen slow X-ray pulsars associated with young SNRs. Remarkably, these objects, taken together, represent at least half of the confirmed pulsars in supernova remnants. This being the case, these pulsars must be the progenitors of a vast population of previously unrecognized neutron stars.


2007 ◽  
Vol 98 (7) ◽  
Author(s):  
José A. Pons ◽  
Bennett Link ◽  
Juan A. Miralles ◽  
Ulrich Geppert

Sign in / Sign up

Export Citation Format

Share Document