scholarly journals Developmental programming: impact of prenatal testosterone treatment and postnatal obesity on ovarian follicular dynamics

2012 ◽  
Vol 3 (4) ◽  
pp. 276-286 ◽  
Author(s):  
V. Padmanabhan ◽  
P. Smith ◽  
A. Veiga-Lopez

Prenatal testosterone (T) excess leads to reproductive dysfunctions in sheep with obesity exaggerating such defects. Developmental studies found ovarian reserve is similar in control and prenatal T sheep at fetal day 140, with prenatal T females showing increased follicular recruitment and persistence at 10 months of age (postpubertal). This study tested whether prenatal T sheep show accelerated depletion prepubertally and whether depletion of ovarian reserve would explain loss of cyclicity in prenatal T females and its amplification by postnatal obesity. Stereological examinations were performed at 5 (prepubertal, control and prenatal T) and 21 months of age (control, prenatal T and prenatal T obese, following estrus synchronization). Obesity was induced by overfeeding from weaning. At 5 months, prenatal T females had 46% less primordial follicles than controls (P < 0.01), supportive of increased follicular depletion. Depletion rate was slower and a higher percentage of growing follicles was present in 21-month compared with 5-month-old prenatal T females (P < 0.01). Postnatal obesity did not exaggerate the impact of prenatal T on follicular recruitment indicating that compounding effects of obesity on loss of cyclicity females is not due to depletion of ovarian reserve. Assessment of follicular dynamics across several time points during the reproductive lifespan (this and earlier study combined) provides evidence supportive of a shift in follicular dynamics in prenatal T females from one of accelerated follicular depletion initiated before puberty to stockpiling of growing follicles after puberty, a time point critical in the development of the polycystic ovary syndrome phenotype.

2017 ◽  
pp. S367-S374
Author(s):  
E. DOMONKOS ◽  
V. BORBÉLYOVÁ ◽  
L. KOLÁTOROVÁ ◽  
T. CHLUPÁČOVÁ ◽  
D. OSTATNÍKOVÁ ◽  
...  

Maternal hyperandrogenism during pregnancy might have metabolic and endocrine consequences on the offspring as shown for the polycystic ovary syndrome. Despite numerous experiments, the impact of prenatal hyperandrogenic environment on postnatal sex steroid milieu is not yet clear. In this study, we investigated the effect of prenatal testosterone excess on postnatal concentrations of luteinizing hormone, corticosterone and steroid hormones including testosterone, pregnenolone, progesterone, estradiol and 7β-hydroxy-epiandrosterone in the offspring of both sexes. Pregnant rats were injected daily with either testosterone propionate or vehicle from gestational day 14 until parturition. The hormones were evaluated in plasma of the adult offspring. As expected, females had lower testosterone and higher pregnenolone, progesterone and estradiol in comparison to males. In addition, corticosterone was higher in females than in males, and it was further elevated by prenatal testosterone treatment. In males, prenatal testosterone exposure resulted in higher 7β-hydroxy-epiandrosterone in comparison to control group. None of the other analyzed hormones were affected by prenatal testosterone. In conclusion, our results did not show major effects on sex hormone production or luteinizing hormone release in adult rats resulting from testosterone excess during their fetal development. However, maternal hyperandrogenism seems to partially affect steroid biosynthesis in sex-specific manner.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1612-P
Author(s):  
NADIRA SULTANA KAKOLY ◽  
ARUL EARNEST ◽  
HELENA TEEDE ◽  
LISA MORAN ◽  
DEBORAH LOXTON ◽  
...  

2019 ◽  
Vol 17 (5) ◽  
pp. 455-464 ◽  
Author(s):  
Alfonso Mate ◽  
Antonio J. Blanca ◽  
Rocío Salsoso ◽  
Fernando Toledo ◽  
Pablo Stiefel ◽  
...  

Pregnancy hypertensive disorders such as Preeclampsia (PE) are strongly correlated with insulin resistance, a condition in which the metabolic handling of D-glucose is deficient. In addition, the impact of preeclampsia is enhanced by other insulin-resistant disorders, including polycystic ovary syndrome and obesity. For this reason, there is a clear association between maternal insulin resistance, polycystic ovary syndrome, obesity and the development of PE. However, whether PE is a consequence or the cause of these disorders is still unclear. Insulin therapy is usually recommended to pregnant women with diabetes mellitus when dietary and lifestyle measures have failed. The advantage of insulin therapy for Gestational Diabetes Mellitus (GDM) patients with hypertension is still controversial; surprisingly, there are no studies in which insulin therapy has been used in patients with hypertension in pregnancy without or with an established GDM. This review is focused on the use of insulin therapy in hypertensive disorders in the pregnancy and its effect on offspring and mother later in life. PubMed and relevant medical databases have been screened for literature covering research in the field especially in the last 5-10 years.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sairish Ashraf ◽  
Shayaq Ul Abeer Rasool ◽  
Mudasar Nabi ◽  
Mohd Ashraf Ganie ◽  
Shariq R. Masoodi ◽  
...  

AbstractPolycystic ovary syndrome (PCOS) is the most common reproductive endocrine disorder in pre-menopausal women having complex pathophysiology. Several candidate genes have been shown to have association with PCOS. CYP19 gene encodes a key steroidogenic enzyme involved in conversion of androgens into estrogens. Previous studies have reported contradictory results with regard to association of SNP rs2414096 in CYP19 gene with PCOS and hyperandrogenism in different ethnic populations. Present study was aimed to investigate the impact of SNP rs2414096 polymorphism of CYP19 gene on susceptibility of PCOS and hyperandrogenism in Kashmiri women. Further we also studied the genotypic-phenotypic association for various clinical and biochemical parameters of this polymorphism. Case control study. 394 PCOS cases diagnosed on the basis of Rotterdam criteria and age matched 306 healthy women. We found a significant differences in genotypic frequency (χ2 = 18.91, p < 0.05) as well as allele frequency (OR 0.63, CI 0.51–0.78, χ2 = 17.66, p < 0.05) between PCOS women and controls. The genotype–phenotype correlation analysis showed a significant difference in FG score (p = 0.047) and alopecia (p = 0.045) between the three genotypes. Also, the androgen excess markers like DHEAS (p < 0.001), Androstenedione (p < 0.001), Testosterone (p < 0.001) and FAI (p = 0.005) were significantly elevated in GG genotype and showed a significant difference in additive model in PCOS women. rs2414096 polymorphism of CYP19 gene is associated with the risk of PCOS as well as with clinical and biochemical markers of hyperandrogenism, hence suggesting its role in clinical manifestations of PCOS in Kashmiri women.


Author(s):  
Lady Katerine Serrano Mujica ◽  
Werner Giehl Glanzner ◽  
Amanda Luiza Prante ◽  
Vitor Braga Rissi ◽  
Gabrielle Rebeca Everling Correa ◽  
...  

AbstractPolycystic ovary syndrome (PCOS) in an intricate disorder characterized by reproductive and metabolic abnormalities that may affect bone quality and strength along with the lifespan. The present study analysed the impact of postnatal androgenization (of a single dose of testosterone propionate 1.25 mg subcutaneously at day 5 of life) on bone development and markers of bone metabolism in adult female Wistar rats. Compared with healthy controls, the results of measurements of micro-computed tomography (microCT) of the distal femur of androgenized rats indicated an increased cortical bone volume voxel bone volume to total volume (VOX BV/TV) and higher trabecular number (Tb.n) with reduced trabecular separation (Tb.sp). A large magnitude effect size was observed in the levels of circulating bone formation Procollagen I N-terminal propeptide (P1NP) at day 60 of life; reabsorption cross-linked C-telopeptide of type I collagen (CTX) markers were similar between the androgenized and control rats at days 60 and 110 of life. The analysis of gene expression in bone indicated elements for an increased bone mass such as the reduction of the Dickkopf-1 factor (Dkk1) a negative regulator of osteoblast differentiation (bone formation) and the reduction of Interleukin 1-b (Il1b), an activator of osteoclast differentiation (bone reabsorption). Results from this study highlight the possible role of the developmental programming on bone microarchitecture with reference to young women with PCOS.


2021 ◽  
Vol 53 (06) ◽  
pp. 382-390
Author(s):  
Yuling Xing ◽  
Jinhu Chen ◽  
Jing Liu ◽  
Huijuan Ma

AbstractThe association between subclinical hypothyroidism (SCH) and polycystic ovary syndrome (PCOS) has been shown in many studies. These findings are still controversial, however. It is unclear whether the co-incidence of subclinical hypothyroidism and polycystic ovary syndrome will affect the severity of metabolism. Therefore, we performed this meta-analysis to investigate the association. A comprehensive search strategy was developed to obtain all relevant studies published in PubMed, EMBASE, Cochrane Library, and Chinese Academic Journal Full-text Database (CNKI) up to 31 December 2020. We adopted the standardized mean difference (SMD) with 95% confidence intervals (CI) for evaluation, and sensitivity analysis was performed. Publication bias was analyzed and represented by a funnel plot, and funnel plot symmetry was assessed with Egger’s test. Twenty-seven studies with 4821 participants (1300 PCOS patients with SCH, 3521 PCOS patients without SCH) were included in the present meta-analysis,among which 71.31% chinese patients out of the total. The results showed that PCOS patients with SCH had higher levels of HOMA-IR, TG, TC, LDL, FBG, FCP, PRL and lower levels of HDL, LH and T. It also recognized the limitation of the lack of a consistent definition of hypothyroidism in the 27 studies included. The results of this study indicated that SCH may aggravate lipid and glucose metabolism in patients with PCOS.


Sign in / Sign up

Export Citation Format

Share Document