Tetrahedron-Based Constitutional Dynamic Network for COVID-19 or Other Coronaviruses Diagnostics and Its Logic Gate Applications

Author(s):  
Jiafeng Pan ◽  
Ying He ◽  
Zhi Liu ◽  
Junhua Chen
Keyword(s):  
1997 ◽  
Vol 7 (3) ◽  
pp. 739-748
Author(s):  
H. Gualous ◽  
A. Koster ◽  
D. Pascal ◽  
S. Laval

2020 ◽  
Vol E103.C (10) ◽  
pp. 547-549
Author(s):  
Yoshinao MIZUGAKI ◽  
Koki YAMAZAKI ◽  
Hiroshi SHIMADA

2012 ◽  
Vol 3 (2) ◽  
pp. 419-423
Author(s):  
JARUPULA RAJESHWAR ◽  
Dr G NARSIMHA

A freely moving nodes forming as group to communicate among themselves are called as Mobile AdHoc Networks (MANET). Many applications are choosing this MANET for effective commutation due to its flexible nature in forming a network. But due to its openness characteristics it is posing many security challenges. As it has highly dynamic network topology security for routing is playing a major role. We have very good routing protocols for route discovery as well as for transporting data packers but most of them lack the feature of security like AODV. In this paper we are studying the basic protocol AODV and identify how it can be made secure. We are studying a protocol S-AODV which is a security extension of AODV which is called Secure AODV (S-AODV) and we are studying enhanced version of S-AODV routing protocol a Adaptive Secure AODV (A-SAODV). Finally we have described about the parameter to be taken for performance evaluation of different secure routing protocols


2019 ◽  
Author(s):  
Adam Eördögh ◽  
Carolina Paganini ◽  
Dorothea Pinotsi ◽  
Paolo Arosio ◽  
Pablo Rivera-Fuentes

<div>Photoactivatable dyes enable single-molecule imaging in biology. Despite progress in the development of new fluorophores and labeling strategies, many cellular compartments remain difficult to image beyond the limit of diffraction in living cells. For example, lipid droplets, which are organelles that contain mostly neutral lipids, have eluded single-molecule imaging. To visualize these challenging subcellular targets, it is necessary to develop new fluorescent molecular devices beyond simple on/off switches. Here, we report a fluorogenic molecular logic gate that can be used to image single molecules associated with lipid droplets with excellent specificity. This probe requires the subsequent action of light, a lipophilic environment and a competent nucleophile to produce a fluorescent product. The combination of these requirements results in a probe that can be used to image the boundary of lipid droplets in three dimensions with resolutions beyond the limit of diffraction. Moreover, this probe enables single-molecule tracking of lipids within and between droplets in living cells.</div>


2017 ◽  
Vol 6 (2/3) ◽  
pp. 93-119
Author(s):  
Miguel Angel Gavilan-Rubio ◽  
Biliana Alexandrova-Kabadjova

2020 ◽  
Author(s):  
Michael Ellington ◽  
Jozef Barunik
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document