scholarly journals Alteration of Transcriptional Regulator Rob In Vivo: Enhancement of Promoter DNA Binding and Antibiotic Resistance in the Presence of Nucleobase Amino Acids

Biochemistry ◽  
2020 ◽  
Vol 59 (12) ◽  
pp. 1217-1220 ◽  
Author(s):  
Chao Zhang ◽  
Shengxi Chen ◽  
Xiaoguang Bai ◽  
Larisa M. Dedkova ◽  
Sidney M. Hecht
2007 ◽  
Vol 189 (8) ◽  
pp. 3017-3025 ◽  
Author(s):  
Mihaela Pruteanu ◽  
Saskia B. Neher ◽  
Tania A. Baker

ABSTRACT Proteases play a crucial role in remodeling the bacterial proteome in response to changes in cellular environment. Escherichia coli ZntR, a zinc-responsive transcriptional regulator, was identified by proteomic experiments as a likely ClpXP substrate, suggesting that protein turnover may play a role in regulation of zinc homeostasis. When intracellular zinc levels are high, ZntR activates expression of ZntA, an ATPase essential for zinc export. We find that ZntR is degraded in vivo in a manner dependent on both the ClpXP and Lon proteases. However, ZntR degradation decreases in the presence of high zinc concentrations, the level of ZntR rises, and transcription of the zntA exporter is increased. Mutagenesis experiments reveal that zinc binding does not appear to be solely responsible for the zinc-induced protection from proteolysis. Therefore, we tested whether DNA binding was important in the zinc-induced stabilization of ZntR by mutagenesis of the DNA binding helices. Replacement of a conserved arginine (R19A) in the DNA binding domain both enhances ZntR degradation and abolishes zinc-induced transcriptional activation of zntA. Biochemical and physical analysis of ZntRR19A demonstrates that it is structurally similar to, and binds zinc as well as does, the wild-type protein but is severely defective in binding DNA. Thus, we conclude that two different ligands—zinc and DNA—function together to increase ZntR stability and that ligand-controlled proteolysis of ZntR plays an important role in fine-tuning zinc homeostasis in bacteria.


2000 ◽  
Vol 182 (20) ◽  
pp. 5807-5812 ◽  
Author(s):  
Eun Hee Cho ◽  
Renato Alcaraz ◽  
Richard I. Gumport ◽  
Jeffrey F. Gardner

ABSTRACT The bacteriophage λ excisionase (Xis) is a sequence-specific DNA binding protein required for excisive recombination. Xis binds cooperatively to two DNA sites arranged as direct repeats on the phage DNA. Efficient excision is achieved through a cooperative interaction between Xis and the host-encoded factor for inversion stimulation as well as a cooperative interaction between Xis and integrase. The secondary structure of the Xis protein was predicted to contain a typical amphipathic helix that spans residues 18 to 28. Several mutants, defective in promoting excision in vivo, were isolated with mutations at positions encoding polar amino acids in the putative helix (T. E. Numrych, R. I. Gumport, and J. F. Gardner, EMBO J. 11:3797–3806, 1992). We substituted alanines for the polar amino acids in this region. Mutant proteins with substitutions for polar amino acids in the amino-terminal region of the putative helix exhibited decreased excision in vivo and were defective in DNA binding. In addition, an alanine substitution at glutamic acid 40 also resulted in altered DNA binding. This indicates that the hydrophilic face of the α-helix and the region containing glutamic acid 40 may form the DNA binding surfaces of the Xis protein.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 464-464
Author(s):  
Christina J. Matheny ◽  
Takeshi Corpora ◽  
Maren E. Speck ◽  
Ting-Lei Gu ◽  
John H. Bushweller ◽  
...  

Abstract Runx1 and CBF β are the DNA-binding and non DNA-binding subunits of a core-binding factor that is required for hematopoiesis, and that is frequently mutated in leukemia. Runx2 is the DNA-binding subunit of a core-binding factor required for bone formation. Mono-allelic deletion, nonsense, frameshift, and missense mutations have been found in RUNX1 in familial platelet disorder with predisposition for acute myelogenous leukemia (FPD/AML) and in myelodysplastic syndrome (MDS), and biallelic mutations in RUNX1 are found in 20% of AML M0 patients. Similar types of mono-allelic mutations have been found in RUNX2 in patients with cleidocranial dysplasia (CCD), an inherited skeletal syndrome. FPD/AML and CCD pedigrees have revealed varying degrees of disease severity depending on the nature of the specific mutation. Additionally, it has been observed that mutations involving amino acids in the DNA binding Runt domain that directly contact DNA are associated primarily with Runx1 and hematopoietic disorders, while mutations predicted to disrupt CBF β binding or the Runt domain structure are found only in Runx2 in CCD patients. We introduced 21 amino acid substitutions into the Runt domain of Runx1 identified in FPD/AML, AML M0, and CCD patients, and quantified their effects on DNA binding, heterodimerization with CBFβ, and the Runt domain structure using yeast one- and two-hybrid, quantitative electrophoretic mobility shift, heteronuclear single quantum correlation spectroscopy, and urea denaturation experiments. To address the impact on in vivo function, several of these point mutations were engineered into the endogenous Runx1 allele in mice. These five mutations include: R177X, R174Q, T149A, T161A, and L148F. R177X is found in FPD/AML patients and truncates Runx1 two amino acids before the C-terminal boundary of the Runt domain. R174Q (found in FPD/AML and CCD) disrupts DNA binding 1000-fold, but does not disrupt CBFb binding or perturb the Runt domain fold. T149A (found only in CCD) disrupts CBFβ binding 13-fold while T161A (not found in patients) disrupts CBFβ binding 40-fold. Both T149A and T161A slightly perturb the Runt domain fold, but do not alter DNA binding affinity. L148F (found in CCD) also disrupts the Runt domain fold, and decreases DNA binding. All animals heterozygous for these alleles are viable. Mice homozygous for R177X and R174Q die during gestation. Mice homozygous for the T149A and T161A mutations, on the other hand, are born at normal Mendelian frequencies, but 62% and 100%, respectively, die by or at three weeks of age from an undetermined cause. The effects of these mutations on hematopoietic progenitor and platelet numbers, both of which are affected in FPD/AML patients, will be presented. We conclude that mutations that affect CBFβ binding result in hypomorphic Runx1 alleles, while mutations involving DNA contacts result in more severe inactivation of Runx1 function. Thus FPD/AML, AML M0, and MDS require mutations that severely inactivate Runx1 function, while CCD can result from more subtle alterations in Runx2.


2000 ◽  
Vol 348 (1) ◽  
pp. 151-158 ◽  
Author(s):  
Mate TOLNAY ◽  
Lajos BARANYI ◽  
George C. TSOKOS

Heterogeneous nuclear ribonucleoprotein D0 (hnRNP D0) is an abundant, ubiquitous protein that binds RNA and DNA sequences specifically, and has been implicated in the transcriptional regulation of the human complement receptor 2 gene. We found that in vivo expression of hnRNP D0-GAL4 fusion proteins increased the transcriptional activity of a GAL4-driven reporter gene, providing direct proof that hnRNP D0 possesses a transactivator domain. We found, using truncated hnRNP D0 proteins fused to GAL4, that 29 amino acids in the N-terminal region are critical for transactivation. We established, using a series of recombinant truncated hnRNP D0 proteins, that the tandem RNA-binding domains alone were not able to bind double-stranded DNA. Nevertheless, 24 additional amino acids of the C-terminus imparted sequence-specific DNA binding. Experiments using peptide-specific antisera supported the importance of the 24-amino-acid region in DNA binding, and suggested the involvement of the 19-amino-acid alternative insert which is present in isoforms B and D. The N-terminus had an inhibitory effect on binding of hnRNP D0 to single-stranded, but not to double-stranded, DNA. Although both recombinant hnRNP D0B and D0D bound DNA, only the B isoform recognized DNA in vivo. We propose that the B isoform of hnRNP D0 functions in the nucleus as a DNA-binding transactivator and has distinct transactivator and DNA-binding domains.


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 264
Author(s):  
Hak Jin Lee ◽  
Seong Tae Jhang ◽  
Hyung Jong Jin

Macrolide–lincosamide–streptogramin B antibiotic resistance occurs through the action of erythromycin ribosome methylation (Erm) family proteins, causing problems due to their prevalence and high minimal inhibitory concentration, and feasibilities have been sought to develop inhibitors. Erms exhibit high conservation next to the N-terminal end region (NTER) as in ErmS, 64SQNF67. Side chains of homologous S, Q and F in ErmC’ are surface-exposed, located closely together and exhibit intrinsic flexibility; these residues form a motif X. In S64 mutations, S64G, S64A and S64C exhibited 71%, 21% and 20% activity compared to the wild-type, respectively, conferring cell resistance. However, mutants harboring larger side chains did not confer resistance and retain the methylation activity in vitro. All mutants of Q65, Q65N, Q65E, Q65R, and Q65H lost their methyl group transferring activity in vivo and in vitro. At position F67, a size reduction of side-chain (F67A) or a positive charge (F67H) greatly reduced the activity to about 4% whereas F67L with a small size reduction caused a moderate loss, more than half of the activity. The increased size by F67Y and F67W reduced the activity by about 75%. In addition to stabilization of the cofactor, these amino acids could interact with substrate RNA near the methylatable adenine presumably to be catalytically well oriented with the SAM (S-adenosyl-L-methionine). These amino acids together with the NTER beside them could serve as unique potential inhibitor development sites. This region constitutes a divergent element due to the NTER which has variable length and distinct amino acids context in each Erm. The NTER or part of it plays critical roles in selective recognition of substrate RNA by Erms and this presumed target site might assume distinct local structure by induced conformational change with binding to substrate RNA and SAM, and contribute to the specific recognition of substrate RNA.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Adam SB Jalal ◽  
Ngat T Tran ◽  
Tung BK Le

In all living organisms, it is essential to transmit genetic information faithfully to the next generation. The SMC-ParAB-parS system is widely employed for chromosome segregation in bacteria. A DNA-binding protein ParB nucleates on parS sites and must associate with neighboring DNA, a process known as spreading, to enable efficient chromosome segregation. Despite its importance, how the initial few ParB molecules nucleating at parS sites recruit hundreds of further ParB to spread is not fully understood. Here, we reconstitute a parS-dependent ParB spreading event using purified proteins from Caulobacter crescentus and show that CTP is required for spreading. We further show that ParB spreading requires a closed DNA substrate, and a DNA-binding transcriptional regulator can act as a roadblock to attenuate spreading unidirectionally in vitro. Our biochemical reconstitutions recapitulate many observed in vivo properties of ParB and opens up avenues to investigate the interactions between ParB-parS with ParA and SMC.


2008 ◽  
Vol 190 (24) ◽  
pp. 8238-8243 ◽  
Author(s):  
Takashi Koyanagi ◽  
Takane Katayama ◽  
Hideyuki Suzuki ◽  
Hidehiko Kumagai

ABSTRACT The transcriptional regulator TyrR is known to undergo a dimer-to-hexamer conformational change in response to aromatic amino acids, through which it controls gene expression. In this study, we identified N316D as the second-site suppressor of Escherichia coli TyrRE274Q, a mutant protein deficient in hexamer formation. N316 variants exhibited altered in vivo regulatory properties, and the most drastic changes were observed for TyrRN316D and TyrRN316R mutants. Gel filtration analyses revealed that the ligand-mediated oligomer formation was enhanced and diminished for TyrRN316D and TyrRN316R, respectively, compared with the wild-type TyrR. ADP was substituted for ATP in the oligomer formation of TyrRN316D.


2019 ◽  
Author(s):  
Adam S. B. Jalal ◽  
Ngat T. Tran ◽  
Tung B. K. Le

ABSTRACTIn all living organisms, it is essential to transmit genetic information faithfully to the next generation. The SMC-ParAB-parS system is widely employed for chromosome segregation in bacteria. A DNA-binding protein ParB nucleates on parS sites and must associate with neighboring DNA, a process known as spreading, to enable efficient chromosome segregation. Despite its importance, how the initial few ParB molecules nucleating at parS sites recruit hundreds of further ParB to spread is not fully understood. Here, we reconstitute a parS-dependent ParB spreading event using purified proteins from Caulobacter crescentus and show that CTP is required for spreading. We further show that ParB spreading requires a closed DNA substrate, and a DNA-binding transcriptional regulator can act as a roadblock to attenuate spreading unidirectionally in vitro. Our biochemical reconstitutions recapitulate many observed in vivo properties of ParB and opens up avenues to investigate the interactions between ParB-parS with ParA and SMC.


1998 ◽  
Vol 180 (6) ◽  
pp. 1411-1417 ◽  
Author(s):  
G. van Keulen ◽  
L. Girbal ◽  
E. R. E. van den Bergh ◽  
L. Dijkhuizen ◽  
W. G. Meijer

ABSTRACT Autotrophic growth of Xanthobacter flavus is dependent on the fixation of carbon dioxide via the Calvin cycle and on the oxidation of simple organic and inorganic compounds to provide the cell with energy. Maximal induction of the cbb andgap-pgk operons encoding enzymes of the Calvin cycle occurs in the absence of multicarbon substrates and the presence of methanol, formate, hydrogen, or thiosulfate. The LysR-type transcriptional regulator CbbR regulates the expression of the cbb andgap-pgk operons, but it is unknown to what cellular signal CbbR responds. In order to study the effects of low-molecular-weight compounds on the DNA-binding characteristics of CbbR, the protein was expressed in Escherichia coli and subsequently purified to homogeneity. CbbR of X. flavus is a dimer of 36-kDa subunits. DNA-binding assays suggested that two CbbR molecules bind to a 51-bp DNA fragment on which two inverted repeats containing the LysR motif are located. The addition of 200 μM NADPH, but not NADH, resulted in a threefold increase in DNA binding. The apparentK d NADPH of CbbR was determined to be 75 μM. By using circular permutated DNA fragments, it was shown that CbbR introduces a 64° bend in the DNA. The presence of NADPH in the DNA-bending assay resulted in a relaxation of the DNA bend by 9°. From the results of these in vitro experiments, we conclude that CbbR responds to NADPH. The in vivo regulation of the cbb andgap-pgk operons may therefore be regulated by the intracellular concentration of NADPH.


1999 ◽  
Vol 181 (10) ◽  
pp. 3303-3306 ◽  
Author(s):  
Michael N. Alekshun ◽  
Stuart B. Levy

ABSTRACT MarR negatively regulates expression of the multiple antibiotic resistance (mar) locus in Escherichia coli. Superrepressor mutants, generated in order to study regions of MarR required for function, exhibited altered inducer recognition properties in whole cells and increased DNA binding to marO in vitro. Mutations occurred in three areas of the relatively small MarR protein (144 amino acids). It is surmised that superrepression results from increased DNA binding activities of these mutant proteins.


Sign in / Sign up

Export Citation Format

Share Document