scholarly journals Polymer Micelles vs Polymer–Lipid Hybrid Vesicles: A Comparison Using RAW 264.7 Cells

2022 ◽  
Carina Ade ◽  
Xiaomin Qian ◽  
Edit Brodszkij ◽  
Paula De Dios Andres ◽  
Järvi Spanjers ◽  
2021 ◽  
Vol 11 (1) ◽  
Haidy A. Saleh ◽  
Eman Ramdan ◽  
Mohey M. Elmazar ◽  
Hassan M. E. Azzazy ◽  
Anwar Abdelnaser

AbstractDoxorubicin (DOX) chemotherapy is associated with the release of inflammatory cytokines from macrophages. This has been suggested to be, in part, due to DOX-mediated leakage of endotoxins from gut microflora, which activate Toll-like receptor 4 (TLR4) signaling in macrophages, causing severe inflammation. However, the direct function of DOX on macrophages is still unknown. In the present study, we tested the hypothesis that DOX alone is incapable of stimulating inflammatory response in macrophages. Then, we compared the anti-inflammatory effects of curcumin (CUR), resveratrol (RES) and sulforaphane (SFN) against lipopolysaccharide/interferon-gamma (LPS/IFN-γ)-mediated inflammation in the absence or presence of DOX. For this purpose, RAW 264.7 cells were stimulated with LPS/IFN-γ (10 ng/mL/10 U/mL) in the absence or presence of DOX (0.1 µM). Our results showed that DOX alone is incapable of stimulating an inflammatory response in RAW 264.7 macrophages. Furthermore, after 24 h of incubation with LPS/IFN-γ, a significant increase in tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and inducible nitric oxide synthase (iNOS) mRNA levels was observed. Similarly, nitric oxide (NO) production and TNF-α and IL-6 protein levels were significantly upregulated. Moreover, in LPS/IFN-γ-treated macrophages, the microRNAs (miRNAs) miR-146a, miR-155, and miR-21 were significantly overexpressed. Interestingly, upon testing CUR, RES, and SFN against LPS/IFN-γ-mediated inflammation, only SFN was able to significantly reverse the LPS/IFN-γ-mediated induction of iNOS, TNF-α and IL-6 and attenuate miR-146a and miR-155 levels. In conclusion, SFN, at the transcriptional and posttranscriptional levels, exhibits potent immunomodulatory action against LPS/IFN-γ-stimulated macrophages, which may indicate SFN as a potential treatment for DOX-associated inflammation.

Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 420
Su-Jung Hwang ◽  
Ye-Seul Song ◽  
Hyo-Jong Lee

Kushen (Radix Sophorae flavescentis) is used to treat ulcerative colitis, tumors, and pruritus. Recently, phaseolin, formononetin, matrine, luteolin, and quercetin, through a network pharmacology approach, were tentatively identified as five bioactive constituents responsible for the anti-inflammatory effects of S. flavescentis. However, the role of phaseolin (one of the primary components of S. flavescentis) in the direct regulation of inflammation and inflammatory processes is not well known. In this study, the beneficial role of phaseolin against inflammation was explored in lipopolysaccharide (LPS)-induced inflammation models of RAW 264.7 macrophages and zebrafish larvae. Phaseolin inhibited LPS-mediated production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS), without affecting cell viability. In addition, phaseolin suppressed pro-inflammatory mediators such as cyclooxygenase 2 (COX-2), interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and interleukin-6 (IL-6) in a dose-dependent manner. Furthermore, phaseolin reduced matrix metalloproteinase (MMP) activity as well as macrophage adhesion in vitro and the recruitment of leukocytes in vivo by downregulating Ninjurin 1 (Ninj1), an adhesion molecule. Finally, phaseolin inhibited the nuclear translocation of nuclear factor-kappa B (NF-κB). In view of the above, our results suggest that phaseolin could be a potential therapeutic candidate for the management of inflammation.

2021 ◽  
Vol 16 (5) ◽  
pp. 1934578X2110076
Sheng Pan ◽  
Zi-Guan Zhu

A new flavonol named 6-(2'',3''-epoxy-3''-methylbutyl)-resokaempferol (1), together with five known compounds (2-6) were isolated from the EtOAc-soluble extract of the aerial part of Saussurea involucrata. Their structures were elucidated on the basis of spectroscopic methods. All compounds were evaluated for their anti-inflammatory effects by measuring the production of nitric oxide (NO) and TNF-α in vitro. Among them, compound 1 showed potential inhibitory activity on the production of NO and TNF-α in LPS-induced RAW 264.7 cells with IC50 values of 48.0 ± 1.5 and 41.4 ± 1.7 µM, respectively.

Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1208
Mina Kim ◽  
Ji Yeong Kim ◽  
Hee Sun Yang ◽  
Jeong-Sook Choe ◽  
In Guk Hwang

Salvia plebeia has been used to treat a variety of inflammatory diseases, as well as colds and bronchitis. Macrophages have antioxidant defense mechanisms to cope with the intracellular reactive oxygen species (ROS) produced as part of the immune response. The nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase (HO)-1 pathway in inflamed macrophages is an appealing target due to its protective effect against ROS-induced cell damage. In this study, nepetoidin B (NeB) was first isolated from S. plebeia and identified by nuclear magnetic resonance spectroscopy. NeB reduced pro-inflammatory mediators (nitric oxide and prostaglandin E2) and cytokines (tumor necrosis factor-α, interleukin (IL)-6, and IL-1β) in LPS-activated RAW 264.7 cells by inhibiting the NF-κB signaling pathway. In the NeB-treated group, catalase and superoxide dismutase levels were significantly higher, and ROS expression decreased. By activating Nrf2 signaling, NeB enhanced HO-1 expression. Furthermore, when the cells were pretreated with tin protoporphyrin (an HO-1 inhibitor), the anti-inflammatory effects of NeB were reduced. Therefore, NeB may activate the Nrf2/ HO-1 pathway. These results reveal the NeB isolated from S. plebeia exerts anti-inflammatory effects by modulating NF-κB signaling and activating the Nrf2/HO-1 pathway in LPS-stimulated RAW 264.7 cells.

Steroids ◽  
2021 ◽  
pp. 108830
Xiaorui Cai ◽  
Fei Sha ◽  
Chuanyi Zhao ◽  
Zhiwei Zheng ◽  
Shulin Zhao ◽  

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Fernanda P. R. Santana ◽  
Rafael C. da Silva ◽  
Simone dos S. Grecco ◽  
Aruanã J. M. C. R. Pinheiro ◽  
Luciana C. Caperuto ◽  

Asthma allergic disease is caused by airway chronic inflammation. Some intracellular signaling pathways, such as MAPK and STAT3-SOCS3, are involved in the control of airway inflammation in asthma. The flavonoid sakuranetin demonstrated an anti-inflammatory effect in different asthma models. Our aim was to clarify how sakuranetin treatment affects MAPK and STAT3-SOCS3 pathways in a murine experimental asthma model. Mice were submitted to an asthma ovalbumin-induction protocol and were treated with vehicle, sakuranetin, or dexamethasone. We assayed the inflammatory profile, mucus production, and serum antibody, STAT3-SOCS3, and MAPK levels in the lungs. Morphological alterations were also evaluated in the liver. LPS-stimulated RAW 264.7 cells were used to evaluate the effects of sakuranetin on nitric oxide (NO) and cytokine production. In vivo, sakuranetin treatment reduced serum IgE levels, lung inflammation (eosinophils, neutrophils, and Th2/Th17 cytokines), and respiratory epithelial mucus production in ovalbumin-sensitized animals. Considering possible mechanisms, sakuranetin inhibits the activation of ERK1/2, JNK, p38, and STAT3 in the lungs. No alterations were found in the liver for treated animals. Sakuranetin did not modify in vitro cell viability in RAW 264.7 and reduced NO release and gene expression of IL-1β and IL-6 induced by LPS in these cells. In conclusion, our data showed that the inhibitory effects of sakuranetin on eosinophilic lung inflammation can be due to the inhibition of Th2 and Th17 cytokines and the inhibition of MAPK and STAT3 pathways, reinforcing the idea that sakuranetin can be considered a relevant candidate for the treatment of inflammatory allergic airway disease.

Sign in / Sign up

Export Citation Format

Share Document