Analysis of the Single Coal Particle Combustion Process under O2/CO2 Atmosphere Based on Spectral Diagnostics Technology: Combination of Spectroscopic Characteristics and Flame Temperature

Author(s):  
Fei Xie ◽  
Runmin Wu ◽  
Juntao Wei ◽  
Xudong Song ◽  
Meiyu Shi ◽  
...  
Author(s):  
Lele Feng ◽  
Yang Zhang ◽  
Yuxin Wu ◽  
Kailong Xu ◽  
Hai Zhang ◽  
...  

Abstract MILD coal combustion is one of promising technologies for clean coal utilization due to uniform heat flux and low NOx emission, while the effect of turbulent mixing on single coal particle combustion under high temperature and low oxygen concentration remains to be studied for micron level particles. In this paper, a 1-D transient coal combustion model was applied to describe mass and heat transfer around a single particle, and the effect of forced convection was modeled to represent turbulent mixing according to similarity analysis. Based on that, effect of particle Reynolds number (Rep) on single coal particle combustion was investigated at various temperature (Ta), oxygen concentration (xO2) and particle diameter (d0). As Rep increases, ignition time (ti) decreases quickly at first and then decreases slowly. ti of larger particle is more sensitive to Rep. As Rep increases, flame temperature (Tf) for 40 μm coal particle decreases, while Tf for 80 μm coal particle barely changes, and that for 160 μm coal particle increases a little. The recommended d0 for MILD coal combustion is smaller than 80 μm. As xO2 decreases from 21% to 5%, ti apparently increases and Tf decreases. ti at lower Ta is more sensitive to Rep. Tf decreases with increasing Rep when Ta < 1200 K. But it appears the opposite trend at Ta = 1600 K. The recommended Ta for MILD coal combustion is lower than 1400 K, while it cannot be too low considering the burnout of char particle.


2021 ◽  
pp. 12-17
Author(s):  
M. A. Vaganov

It is proposed to use the methods of applied optical spectroscopy to solve the problem of control and diagnostics of gaseous hydrocarbon fuel combustion in this work. The results of an experimental study of spectroscopic informative parameters characterizing the propane combustion process are presented for three modes: combustion of pure propane without air supply, stoichiometric combustion and combustion with a change in the amount of supplied air relative to stoichiometric combustion. As a result of the experiment, it was found that the most intense bands in the emission spectrum of the flame arising from the combustion of propane correspond to the spectral bands of radicals of combustion products: OH, CH, and C2. While the intensities of various systems of bands in the flame spectrum depend significantly on the composition of the combustible mixture.


Author(s):  
G. Arvind Rao ◽  
Yeshayahou Levy ◽  
Ephraim J. Gutmark

Flameless combustion (FC) is one of the most promising techniques of reducing harmful emissions from combustion systems. FC is a combustion phenomenon that takes place at low O2 concentration and high inlet reactant temperature. This unique combination results in a distributed combustion regime with a lower adiabatic flame temperature. The paper focuses on investigating the chemical kinetics of an prototype combustion chamber built at the university of Cincinnati with an aim of establishing flameless regime and demonstrating the applicability of FC to gas turbine engines. A Chemical reactor model (CRM) has been built for emulating the reactions within the combustor. The entire combustion chamber has been divided into appropriate number of Perfectly Stirred Reactors (PSRs) and Plug Flow Reactors (PFRs). The interconnections between these reactors and the residence times of these reactors are based on the PIV studies of the combustor flow field. The CRM model has then been used to predict the combustor emission profile for various equivalence ratios. The results obtained from CRM model show that the emission from the combustor are quite less at low equivalence ratios and have been found to be in reasonable agreement with experimental observations. The chemical kinetic analysis gives an insight on the role of vitiated combustion gases in suppressing the formation of pollutants within the combustion process.


2019 ◽  
Vol 9 (4) ◽  
pp. 27-32
Author(s):  
Olga A. BALANDINA ◽  
Svetlana M. PURING

The analysis of the values of the concentrations of the formed nitrogen oxides and the temperatures of the jet plume under various conditions of mixture formation is carried out. The plots of the distribution of torch temperatures and concentrations of nitric oxide in the calculated area for oxidizer temperatures of 20, 60, 100, 150, and 200 ° C were obtained and analyzed. Mathematical modeling of the gaseous fuel combustion process was carried out using the FlowVision software package. An analysis of the results showed that a decrease in the temperature of the air supplied as an oxidizing agent leads to a significant decrease in the concentration of nitrogen oxides in flue gases, while not significantly affecting the change in the flame temperature. The research results can be used to solve the problems of optimizing boiler plants, in order to reduce harmful flue gas emissions. Further modeling is planned to determine the dependence of the influence of various factors on the degree of formation of nitrogen oxides in the flue gases of boiler plants.


2015 ◽  
Vol 19 (6) ◽  
pp. 1943-1957
Author(s):  
Simona Merola ◽  
Luca Marchitto ◽  
Cinzia Tornatore ◽  
Gerardo Valentino

Combustion process was studied from the injection until the late combustion phase in an high swirl optically accessible combustion bowl connected to a single cylinder 2-stroke high pressure common rail compression ignition engine. Commercial diesel and blends of diesel and n-butanol (20%: BU20 and 40%: BU40) were used for the experiments. A pilot plus main injection strategy was investigated fixing the injection pressure and fuel mass injected per stroke. Two main injection timings and different pilot-main dwell times were explored achieving for any strategy a mixing controlled combustion. Advancing the main injection start, an increase in net engine working cycle (>40%) together with a strong smoke number decrease (>80%) and NOx concentration increase (@50%) were measured for all pilot injection timings. Compared to diesel fuel, butanol induced a decrease in soot emission and an increase in net engine working area when butanol ratio increased in the blend. A noticeable increase in NOx was detected at the exhaust for BU40 with a slight effect of the dwell-time. Spectroscopic investigations confirmed the delayed auto-ignition (~60 ms) of the pilot injection for BU40 compared to diesel. The spectral features for the different fuels were comparable at the start of combustion process, but they evolved in different ways. Broadband signal caused by soot emission, was lower for BU40 than diesel. Different balance of the bands at 309 and 282 nm, due to different OH transitions, were detected between the two fuels. The ratio of these intensities was used to follow flame temperature evolution.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2611 ◽  
Author(s):  
Torsten Berning ◽  
Søren Knudsen Kær

A fundamental thermodynamic analysis of an air-cooled fuel cell, where the reactant air stream is also the coolant stream, is presented. The adiabatic cell temperature of such a fuel cell is calculated in a similar way as the adiabatic flame temperature in a combustion process. Diagrams that show the dependency of the cathode outlet temperature, the stoichiometric flow ratio and the operating cell voltage are developed. These diagrams can help fuel cell manufacturers to identify a suitable blower and a suitable operating regime for their fuel cell stacks. It is found that for standard conditions, reasonable cell temperatures are obtained for cathode stoichiometric flow ratios of ξ = 50 and higher, which is in very good agreement with manufacturer’s recommendations. Under very cold ambient conditions, the suggested stoichiometric flow ratio is only in the range of ξ = 20 in order to obtain a useful fuel cell operating temperature. The outside relative humidity only plays a role at ambient temperatures above 40 °C, and the predicted stoichiometric flow ratios should be above ξ = 70 in this region. From a thermodynamic perspective, it is suggested that the adiabatic outlet temperature is a suitable definition of the fuel cell operating temperature.


2019 ◽  
Vol 9 (19) ◽  
pp. 3989 ◽  
Author(s):  
Cheng Wang ◽  
Anthony Chun Yin Yuen ◽  
Qing Nian Chan ◽  
Timothy Bo Yuan Chen ◽  
Qian Chen ◽  
...  

This paper numerically examines the characterisation of fire whirl formulated under various entrainment conditions in an enclosed configuration. The numerical framework, integrating large eddy simulation and detailed chemistry, is constructed to assess the whirling flame behaviours. The proposed model constraints the convoluted coupling effects, e.g., the interrelation between combustion, flow dynamics and radiative feedback, thus focuses on assessing the impact on flame structure and flow behaviour solely attribute to the eddy-generation mechanisms. The baseline model is validated well against the experimental data. The data of the comparison case, with the introduction of additional flow channelling slit, is subsequently generated for comparison. The result suggests that, with the intensified circulation, the generated fire whirl increased by 9.42 % in peak flame temperature, 84.38 % in visible flame height, 6.81 % in axial velocity, and 46.14 % in velocity dominant region. The fire whirl core radius of the comparison case was well constrained within all monitored heights, whereas that of the baseline tended to disperse at 0.5   m height-above-burner. This study demonstrates that amplified eddy generation via the additional flow channelling slit enhances the mixing of all reactant species and intensifies the combustion process, resulting in an elongated and converging whirling core of the reacting flow.


Author(s):  
Lei Zhao ◽  
Ting Wang

A pyroscrubber is a furnace used in the petroleum coke calcining industry to recover energy from the carbonaceous contents, including char dust and hydrocarbon volatiles of the exhaust gas from the calcination kiln. The combusted hot gases are used to generate steam and produce electricity, so it is important to optimize the pyroscrubber performance to produce high-grade combusted gases to generate steam but with minimal emissions. A previous study employed the locally-homogeneous flow (LHF) model to study rhe means to improve combustion efficiency and reduce emissions. In the LHF model, the inter-phase exchange rates of mass, momentum and energy are assumed to be infinitely fast, so the dispersed phase (char dust) can be simplified as the gas phase, and the complex two-phase flow is then treated as a single-phase flow. In this study, LHF model is replaced with a solid particle combustion model by incorporating both finite-rate heterogeneous and homogeneous combustion processes. Results reveal that the particle combustion model generates much higher local flame temperature (2200K) than in LHF model (1800K). All char particles are burned before or in the high-bay area. Total energy output of the case with particle combustion model is 92% of the LHF model. Furthermore, motivated by the potential energy saving from removing the air blower power supply, this study further investigates the possible benefit of running the pyroscrubber with the ventilation doors open. Three cases with different combinations of air injections and door opening have been studied. Results show that the gas flow is stably stratified with a large amount of the entrained cold air moving at the bottom of the chamber and the hot combusted gas moving through the top. With bottom doors completely open, sufficient air can be drawn into the pyroscrubber without the need of blowing air in, but the combustion gases will be overcooled making this practice unfavorable from the energy saving point of view.


Sign in / Sign up

Export Citation Format

Share Document