Modeling Secondary Organic Aerosol Tracers and Tracer-to-SOA Ratios for Monoterpenes and Sesquiterpenes Using a Chemical Transport Model

Author(s):  
Jie Zhang ◽  
Xiao He ◽  
Xiang Ding ◽  
Jian Zhen Yu ◽  
Qi Ying
2017 ◽  
Author(s):  
Adrian M. Maclean ◽  
Christopher L. Butenhoff ◽  
James W. Grayson ◽  
Kelley Barsanti ◽  
Jose L. Jimenez ◽  
...  

Abstract. When simulating the formation and life cycle of secondary organic aerosol (SOA) with chemical transport models, it is often assumed that organic molecules are well mixed within SOA particles on the time scale of 1 h. While this assumption has been debated vigorously in the literature, the issue remains unresolved in part due to a lack of information on the mixing times within SOA particles as a function of both temperature and relative humidity. Using laboratory data, meteorological fields and a chemical transport model, we determine how often mixing times are


2007 ◽  
Vol 7 (21) ◽  
pp. 5675-5694 ◽  
Author(s):  
C. R. Hoyle ◽  
T. Berntsen ◽  
G. Myhre ◽  
I. S. A. Isaksen

Abstract. The global chemical transport model Oslo CTM2 has been extended to include the formation, transport and deposition of secondary organic aerosol (SOA). Precursor hydrocarbons which are oxidised to form condensible species include both biogenic species such as terpenes and isoprene, as well as species emitted predominantly by anthropogenic activities (toluene, m-xylene, methylbenzene and other aromatics). A model simulation for 2004 gives an annual global SOA production of approximately 55 Tg. Of this total, 2.5 Tg is found to consist of the oxidation products of anthropogenically emitted hydrocarbons, and about 15 Tg is formed by the oxidation products of isoprene. The global production of SOA is increased to about 69 Tg yr−1 by allowing semi-volatile species to partition to ammonium sulphate aerosol. This brings modelled organic aerosol values closer to those observed, however observations in Europe remain significantly underestimated. Allowing SOA to partition into ammonium sulphate aerosol increases the contribution of anthropogenic SOA from about 4.5% to 9.4% of the total production. Total modelled organic aerosol (OA) values are found to represent a lower fraction of the measured values in winter (when primary organic aerosol (POA) is the dominant OA component) than in summer, which may be an indication that estimates of POA emissions are too low. Additionally, for measurement stations where the summer OA values are higher than in winter, the model generally underestimates the increase in summertime OA. In order to correctly model the observed increase in OA in summer, additional SOA sources or formation mechanisms may be necessary. The importance of NO3 as an oxidant of SOA precursors is found to vary regionally, causing up to 50%–60% of the total amount of SOA near the surface in polluted regions and less than 25% in more remote areas, if the yield of condensible oxidation products for β-pinene is used for NO3 oxidation of all terpenes. Reducing the yield for α-pinene and limonene oxidation in line with recent measurements reduces the global fraction of SOA formed from NO3 oxidation products from 27% to about 21%. This study underscores the need for SOA to be represented in a more realistic way in global aerosol models in order to better reproduce observations of organic aerosol burdens in industrialised and biomass burning regions.


Author(s):  
Giancarlo Ciarelli ◽  
Jianhui Jiang ◽  
Imad El Haddad ◽  
Alessandro Bigi ◽  
Sebnem Aksoyoglu ◽  
...  

Our results indicate that lockdown measures induced a mild increase in secondary organic aerosol (SOA) concentrations in areas with substantial reductions in nitrogen dioxide (NO2) concentrations, i.e. the “Greater Milan” area.


2012 ◽  
Vol 12 (2) ◽  
pp. 5939-6018
Author(s):  
C. A. Stroud ◽  
M. D. Moran ◽  
P. A. Makar ◽  
S. Gong ◽  
W. Gong ◽  
...  

Abstract. Observations from the 2007 Border Air Quality and Meteorology Study (BAQS-Met 2007) in southern Ontario (ON), Canada, were used to evaluate Environment Canada's regional chemical transport model predictions of primary organic aerosol (POA). Environment Canada's operational numerical weather prediction model and the 2006 Canadian and 2005 US national emissions inventories were used as input to the chemical transport model (named AURAMS). Particle-component-based factor analysis was applied to aerosol mass spectrometer measurements made at one urban site (Windsor, ON) and two rural sites (Harrow and Bear Creek, ON) to derive hydrocarbon-like organic aerosol (HOA) factors. Co-located carbon monoxide (CO), PM2.5 black carbon (BC), and PM1 SO4 measurements were also used for evaluation and interpretation, permitting a detailed diagnostic model evaluation. At the urban site, good agreement was observed for the comparison of daytime campaign PM1 POA and HOA mean values: 1.1 μg m−3 vs. 1.2 μg m−3, respectively. However, a POA overprediction was evident on calm nights due to an overly-stable model surface layer. Biases in model POA predictions trended from positive to negative with increasing HOA values. This trend has several possible explanations, including (1) underweighting of urban locations in particulate matter (PM) spatial surrogate fields, (2) overly-coarse model grid spacing for resolving urban-scale sources, and (3) lack of a model particle POA evaporation process during dilution of vehicular POA tail-pipe emissions to urban scales. Furthermore, a trend in POA bias was observed at the urban site as a function of the BC/HOA ratio, suggesting a possible association of POA underprediction for diesel combustion sources. For several time periods, POA overprediction was also observed for sulphate-rich plumes, suggesting that our model POA fractions for the PM2.5 chemical speciation profiles may be too high for these point sources. At the rural Harrow site, significant underpredictions in PM1 POA concentration were found compared to observed HOA concentration and were associated, based on back-trajectory analysis, with (1) transport from the Detroit/Windsor urban complex, (2) longer-range transport from the US Midwest, and (3) biomass burning. Daytime CO concentrations were significantly overpredicted at Windsor but were unbiased at Harrow. Collectively, these biases provide support for a hypothesis that combines a current underweighting of PM spatial surrogate fields for urban locations with insufficient model vertical mixing for sources close to the urban measurement sites. The magnitude of the area POA emissions sources in the US and Canadian inventories (e.g., food cooking, road and soil dust, waste disposal burning) suggests that more effort should be placed at reducing uncertainties in these sectors, especially spatial and temporal surrogates.


2007 ◽  
Vol 7 (3) ◽  
pp. 9053-9092 ◽  
Author(s):  
C. R. Hoyle ◽  
T. Berntsen ◽  
G. Myhre ◽  
I. S. A. Isaksen

Abstract. The global chemical transport model Oslo CTM2 has been extended to include the formation, transport and deposition of secondary organic aerosol (SOA). Precursor hydrocarbons which are oxidised to form condensible species include both biogenic species such as terpenes and isoprene, as well as species emitted predominantly by anthropogenic activities (toluene, m-xylene, methylbenzene and other aromatics). A model simulation for 2004 gives an annual global SOA production of approximately 55 Tg. Of this total, 2.5 Tg is found to consist of the oxidation products of anthropogenically emitted hydrocarbons, and about 15 Tg is formed by the oxidation products of isoprene. The global production of SOA is increased to about 76 Tg yr−1 by allowing semi-volatile species to condense on ammonium sulphate aerosol. This brings modelled organic aerosol values closer to those observed, however observations in Europe remain significantly underestimated, raising the possibility of an unaccounted for SOA source. Allowing SOA to form on ammonium sulphate aerosol increases the contribution of anthropogenic SOA from about 4.5% to almost 9% of the total production. The importance of NO3 as an oxidant of SOA precursors is found to vary regionally, causing up to 50%–60% of the total amount of SOA near the surface in polluted regions and less than 25% in more remote areas. This study underscores the need for SOA to be represented in a more realistic way in global aerosol models in order to better reproduce observations of organic aerosol burdens in industrialised and biomass burning regions.


Sign in / Sign up

Export Citation Format

Share Document