Synthesis of a Ti-SBA-15-NiMo Hydrodesulfurization Catalyst: The Effect of the Hydrothermal Synthesis Temperature of NiMo and Molybdenum Loading on the Catalytic Activity

2017 ◽  
Vol 56 (18) ◽  
pp. 5201-5209 ◽  
Author(s):  
Saheed A. Ganiyu ◽  
Syed Ahmed Ali ◽  
Khalid Alhooshani
2007 ◽  
Vol 561-565 ◽  
pp. 495-498 ◽  
Author(s):  
Jin Liang Huang ◽  
Xiao Wang ◽  
Liu Shuan Yang ◽  
Chun Wei Cui ◽  
Xing Hua Yang

The cubic pyrochlore phase Bi1.5ZnNb1.5O7 nanopowder was successfully synthesized by the hydrothermal method (HTM) from the starting materials: Bi(NO3)3·5H2O, ZnO, Nb2O5 and the mineralizer: KOH. The XRD patterns prove that the cubic pyrochlore phase Bi1.5ZnNb1.5O7 nanopowder can be obtained by HTM, and TEM photographs show that the powders present the regularly granular shape, when the hydrothermal reactions were conducted at synthesis temperatures 140~220°C and reaction time for 6~48h. The crystalline sizes of the powders were calculated by the Scherrer equation to be about 43~49nm. The crystalline sizes decreased both with the increase in synthesis temperature and the prolonged reaction time until they reached to the minimum size about 43nm at 220°C for 24h.However, they tended to increase when the reaction time was above 24h.


2018 ◽  
Vol 44 (6) ◽  
pp. 6157-6161 ◽  
Author(s):  
M. Poienar ◽  
R. Banica ◽  
P. Sfirloaga ◽  
C. Ianasi ◽  
C.V. Mihali ◽  
...  

2014 ◽  
Vol 4 (12) ◽  
pp. 4250-4257 ◽  
Author(s):  
Toru Murayama ◽  
Junli Chen ◽  
Jun Hirata ◽  
Keeko Matsumoto ◽  
Wataru Ueda

Layered-structure-type niobium oxides were synthesized by the hydrothermal method by using ammonium niobium oxalate as a precursor.


2019 ◽  
Vol 6 (7) ◽  
pp. 1735-1743 ◽  
Author(s):  
Jing Shi ◽  
Huixiang Wang ◽  
Yequn Liu ◽  
Xiaobo Ren ◽  
Haizhen Sun ◽  
...  

CeO2 octahedra are prepared rapidly and they exhibit improved catalytic activity due to high concentration of oxygen vacancies and exposed (111) facets.


2014 ◽  
Vol 607 ◽  
pp. 47-50
Author(s):  
Amirul Abd Rashid ◽  
Nor Hayati Saad ◽  
Daniel Bien Chia Sheng ◽  
Kah Yaw Lee ◽  
Wai Yee Lee ◽  
...  

There are few known parameters which govern tungsten trioxide (WO3) hydrothermal synthesis process which includes material source concentration, synthesis temperature, duration, pH value and additive level. Using design of experiments (DOE) approach, a systematic experimental procedure was conducted to investigate the effect of each parameter to the final morphology of the synthesized nanostructure. Despite the response obtained from this study is in qulitative form, the analysis still can be done to identify the combination of variables that most likely can produce either 1-D, 2-D or 3-D nanostructure. This insight is essential before further optimization of the process can be done in order to predict the behavior of the WO3 hydrothermal synthesis process.


2011 ◽  
Vol 110-116 ◽  
pp. 1928-1933 ◽  
Author(s):  
Yan Xiang Wang ◽  
Xiao Yan Li ◽  
Jian Sun ◽  
Yao Hui Hu

In the paper, ZnO nanopowders were synthesized by one-step hydrothermal synthesis using zinc acetate and sodium hydroxide as raw materials. The influences of molar concentration of NaOH and synthesis temperature on the properties of ZnO nanopowders were investigated. XRD and FSEM were used to characterize ZnO nanopowders. The results showed that; when the molar concentration of NaOH was 0.05 mol/L, 1mol/L and 2mol/L, ZnO micrometer powders were obtained. When the molar concentration of NaOH was 4mol/L, ZnO nanorods or nanosheets were obtained with different reaction temperature. When the temperature was 220°C, ZnO nanorods with the length of 500nm and diameter of 100nm, were synthesised. Pure ZnO nanopowders can be obtained at lower temperature of 100°C by using one-step hydrothermal synthesis. When the synthesis temperature was 100°C and the molar concentration of NaOH was 4mol/L, ZnO nanosheets were produced. The length, width and thickness of ZnO nanosheets were about 800 nm, 500nm and 80nm, respectively.


Sign in / Sign up

Export Citation Format

Share Document