Effect of Lotus Seed Resistant Starch on Lactic Acid Conversion to Butyric Acid Fermented by Rat Fecal Microbiota

Author(s):  
Zhiyun Wang ◽  
Yan Lin ◽  
Lu Liu ◽  
Baodong Zheng ◽  
Yi Zhang ◽  
...  
2020 ◽  
Vol 151 ◽  
pp. 384-393 ◽  
Author(s):  
Suzhen Lei ◽  
Xin Li ◽  
Lu Liu ◽  
Mingjing Zheng ◽  
Qing Chang ◽  
...  

2020 ◽  
Vol 98 (11) ◽  
Author(s):  
Ana L M Gomes ◽  
Antonio V I Bueno ◽  
Fernando A Jacovaci ◽  
Guilherme Donadel ◽  
Luiz F Ferraretto ◽  
...  

Abstract Our objective was to examine the effects of processing, moisture, and anaerobic storage length of reconstituted corn grain (RCG) on the fermentation profile, geometric mean particle size (GMPS), and ruminal dry matter disappearance (DMD). Dry corn kernels were ground (hammer mill, 5-mm screen) or rolled, then rehydrated to 30%, 35%, or 40% moisture, and stored for 0, 14, 30, 60, 90, 120, or 180 d in laboratory silos. Rolled corn had an increased GMPS compared with ground corn (2.24 and 1.13 mm, respectively, at ensiling). However, there was a trend for an interaction between processing and moisture concentration to affect particle size, with GMPS increasing with increased moisture concentration, especially in ground corn. Longer storage periods also slightly increased GMPS. Processing, moisture, and storage length interacted to affect the fermentation pattern (two- or three-way interactions). Overall, pH decreased, whereas lactic acid, acetic acid, ethanol, and NH3-N increased with storage length. RCG with 30% moisture had less lactic acid than corn with 35% and 40% moisture, indicating that fermentation might have been curtailed and also due to the clostridial fermentation that converts lactic acid to butyric acid. Ensiling reconstituted ground corn with 30% of moisture led to greater concentrations of ethanol and butyric acid, resulting in greater DM loss than grain rehydrated to 35% or 40% of moisture. Ammonia-N and in situ ruminal DMD were highest for reconstituted ground corn with 35% or 40% of moisture, mainly after 60 d of storage. Therefore, longer storage periods and greater moisture contents did not offset the negative effect of greater particle size on the in situ ruminal DMD of rolled RCG. Nonetheless, RCG should be ensiled with more than 30% moisture and stored for at least 2 mo to improve the ruminal DMD and reduce the formation of ethanol and butyric acid.


2021 ◽  
Vol 8 (6) ◽  
pp. 113
Author(s):  
Taemook Park ◽  
Heetae Cheong ◽  
Jungho Yoon ◽  
Ahram Kim ◽  
Youngmin Yun ◽  
...  

(1) Background: The intestinal microbiota plays an essential role in maintaining the host’s health. Dysbiosis of the equine hindgut microbiota can alter the fermentation patterns and cause metabolic disorders. (2) Methods: This study compared the fecal microbiota composition of horses with intestinal disease and their healthy counterparts living in Korea using 16S rRNA sequencing from fecal samples. A total of 52 fecal samples were collected and divided into three groups: horses with large intestinal disease (n = 20), horses with small intestinal disease (n = 8), and healthy horses (n = 24). (3) Results: Horses with intestinal diseases had fewer species and a less diverse bacterial population than healthy horses. Lactic acid bacteria, Lachnospiraceae, and Lactobacillaceae were overgrown in horses with large intestinal colic. The Firmicutes to Bacteroidetes ratio (F/B), which is a relevant marker of gut dysbiosis, was 1.94, 2.37, and 1.74 for horses with large intestinal colic, small intestinal colic, and healthy horses, respectively. (4) Conclusions: The overgrowth of two lactic acid bacteria families, Lachnospiraceae and Lactobacillaceae, led to a decrease in hindgut pH that interfered with normal fermentation, which might cause large intestinal colic. The overgrowth of Streptococcus also led to a decrease in pH in the hindgut, which suppressed the proliferation of the methanogen and reduced methanogenesis in horses with small intestinal colic.


2021 ◽  
Vol 10 (1) ◽  
pp. 91
Author(s):  
Patrycja Cichońska ◽  
Małgorzata Ziarno

Fermentation is widely used in the processing of dairy, meat, and plant products. Due to the growing popularity of plant diets and the health benefits of consuming fermented products, there has been growing interest in the fermentation of plant products and the selection of microorganisms suitable for this process. The review provides a brief overview of lactic acid bacteria (LAB) and their use in fermentation of legumes and legume-based beverages. Its scope also extends to prebiotic ingredients present in legumes and legume-based beverages that can support the growth of LAB. Legumes are a suitable matrix for the production of plant-based beverages, which are the most popular products among dairy alternatives. Legumes and legume-based beverages have been successfully fermented with LAB. Legumes are a natural source of ingredients with prebiotic properties, including oligosaccharides, resistant starch, polyphenols, and isoflavones. These compounds provide a broad range of important physiological benefits, including anti-inflammatory and immune regulation, as well as anti-cancer properties and metabolic regulation. The properties of legumes make it possible to use them to create synbiotic food, which is a source of probiotics and prebiotics.


Author(s):  
Corine Nzeteu

Contribution to the International Chain Elongation Conference 2020 | ICEC 2020. An abstract can be found in the right column.


2019 ◽  
Vol 286 ◽  
pp. 449-458 ◽  
Author(s):  
Chuanjie Chen ◽  
Weiqing Fu ◽  
Qing Chang ◽  
Baodong Zheng ◽  
Yi Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document