Symmetry Dilemma of Doubly Hybrid Density Functionals for Equilibrium Molecular Property Calculations

Author(s):  
Yonghao Gu ◽  
Xin Xu
1989 ◽  
Vol 86 ◽  
pp. 853-859 ◽  
Author(s):  
Federico Moscardó ◽  
José Pérez-Jordá ◽  
Emilio San-Fabián

Author(s):  
Sirisha Kalam ◽  
Sai Krishn G ◽  
Kumara Swamy D ◽  
Sai Santhoshi K ◽  
Durga Prasad K

Pharmacological agents that kills parasites are essential drugs in some tropical countries. In this study, a series of 2-amino substituted 4-phenyl thiazole derivatives (4a-e) have been synthesized by the conventional method. The thiazole derivatives were synthesized by three steps. The obtained five derivatives were purified by recrystallization using methanol as a solvent or column chromatography. They were characterized by melting point, TLC, FTIR, 1H NMR and MASS spectral data. Compounds 4a-e were evaluated in silico by using different software’s (Lipinski’s Rule of 5, OSIRIS molecular property explorer, Molsoft molecular property explorer, and PASS & docking studies). These compounds were then evaluated for their possible anthelmintic activity against Indian adult earth worms (Pherituma postuma). All the compounds displayed significant anthelmintic activity. Compound 4c and 4e were more potent compounds when compared with the standard drug (mebendazole). Molecular docking studies guided and proved the biological activity against beta tubulin protein (1OJ0). In conclusions, these new molecules have promising potential as anthelmintic for treatment of parasites.   


2021 ◽  
Vol 7 (7) ◽  
pp. 101
Author(s):  
Ian Shuttleworth

A comparative study of the unreacted and reacted uniaxially strained Pt(111) and the layered (111)-Pt/Ni/Pt3Ni and (111)-Pt/Ni/PtNi3 surfaces has been performed using density functional theory (DFT). An in-depth study of the unreacted surfaces has been performed to evaluate the importance of geometric, magnetic and ligand effects in determining the reactivity of these different Pt surfaces. An analysis of the binding energies of oxygen and hydrogen over the high-symmetry binding positions of all surfaces has been performed. The study has shown that O and H tend to bind more strongly to the (111)-Pt/Ni/Pt3Ni surface and less strongly to the (111)-Pt/Ni/PtNi3 surface compared to binding on the equivalently strained Pt(111) surfaces. Changes in the surface magnetisation of the surfaces overlaying the ferromagnetic alloys during adsorption are discussed, as well as the behaviour of the d-band centre across all surfaces, to evaluate the potential mechanisms for these differences in binding. An accompanying comparison of the accessible density functionals has been included to estimate the error in the computational binding energies.


Sign in / Sign up

Export Citation Format

Share Document