New Insights into the Influence of the 4f55d1 State in the 4f6 Electronic Configuration of Sm2+ in Crystal Hosts

2019 ◽  
Vol 123 (13) ◽  
pp. 2881-2887 ◽  
Author(s):  
Julien Christmann ◽  
Hans Hagemann
1987 ◽  
Vol 52 (7) ◽  
pp. 1652-1657 ◽  
Author(s):  
Grigorii V. Gadiyak ◽  
Yurii N. Morokov ◽  
Mojmír Tomášek

Total energy calculations of three- and four-atomic silver clusters have been performed by the spin-polarized version of the CNDO/2 method to get the most stable equilibrium geometries, atomization energies, and charge and spin distribution on the atoms for three different basis sets: {s}, {sp}, and {spd}. When viewed from the equilateral triangle and square geometries, the last electronic configuration, i.e. the {spd} one, appears to be most stable with respect to the geometrical deformations considered. In this case, the behaviour of the atoms of both clusters resembles that of hard spheres (i.e. close-packing).


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Buzuayehu Abebe ◽  
Enyew Amare Zereffa ◽  
Aschalew Tadesse ◽  
H. C. Ananda Murthy

Abstract Metal oxide nanomaterials are one of the preferences as antibacterial active materials. Due to its distinctive electronic configuration and suitable properties, ZnO is one of the novel antibacterial active materials. Nowadays, researchers are making a serious effort to improve the antibacterial activities of ZnO by forming a composite with the same/different bandgap semiconductor materials and doping of ions. Applying capping agents such as polymers and plant extract that control the morphology and size of the nanomaterials and optimizing different conditions also enhance the antibacterial activity. Forming a nanocomposite and doping reduces the electron/hole recombination, increases the surface area to volume ratio, and also improves the stability towards dissolution and corrosion. The release of antimicrobial ions, electrostatic interaction, reactive oxygen species (ROS) generations are the crucial antibacterial activity mechanism. This review also presents a detailed discussion of the antibacterial activity improvement of ZnO by forming a composite, doping, and optimizing different conditions. The morphological analysis using scanning electron microscopy, field emission-scanning electron microscopy, field-emission transmission electron microscopy, fluorescence microscopy, and confocal microscopy can confirm the antibacterial activity and also supports for developing a satisfactory mechanism. Graphical abstract Graphical abstract showing the metal oxides antibacterial mechanism and the fluorescence and scanning electron microscopic images.


2021 ◽  
Author(s):  
Abhineet Verma ◽  
Sk Saddam Hossain ◽  
Sailaja S Sunkari ◽  
Joseph Reibenspies ◽  
Satyen Saha

Lanthanides (LnIII) are well known for their characteristic emission in the Near-Infrared Region (NIR). However, direct excitation of lanthanides is not feasible as described by Laporte’s parity selection rule. Here,...


1987 ◽  
Vol 42 (6) ◽  
pp. 666-668 ◽  
Author(s):  
A. Simon ◽  
Hj. Mattausch ◽  
N. B. Mikheev ◽  
C. Keller

Abstract Co-crystallization experiments with radioactive isotopes of lanthanides (Ce, Nd, Eu, Gd, Tb, Dy, Tm, Yb) show that only Tb is incorporated by Gd2Cl3 in a significant amount. The results are discussed in terms of the electronic configuration of Ln2+ ions as well as redox potentials E°(Ln3+/Ln2+).


The controversy which exists at the present time between the figures 125 and 170 kcal./g.- atom for the latent heat of sublimation of carbon into monatomic vapour in the ground state originates largely from the neglect to take into consideration the energy required to raise the carbon atoms from the ground ( 3 P ) state to the lowest tetravalent ( 5 S ) electronic configuration corresponding to that in which it is normally found in chemical combination. Consideration of the energies of removal of a hydrogen atom from the methane and ethane molecules and of the energies of reorganization of the resulting radicals leads to the figure 190 ± about 10 kcal. for L 2 , the heat of sublimation into free atoms in the 5 S state. This in turn leads to a satisfactory and unambiguous assignment of values to bond energies (as distinct from dissociation energies) which can now be expressed with an uncertainty of not more than a few kcal. In the light of the valency distinction there remains no sound evidence to maintain the higher value put forward for L 1 and 125 kcal. is unquestionably of the right order. There are strong indications that an earlier estimate of 100 kcal. for the energy level of the 5 S state above the 3 P (ground) state is about 50 % in excess of the true value. The necessity for establishing this branch of thermochemistry on a sound theoretical and experimental footing has long been a very obvious need. The scheme here suggested reconciles points hitherto in apparent conflict, and brings virtually all established experimental knowledge into alignment.


An electronic absorption spectrum, attributed to phenyl, has been observed in the visible region with origin at 18 908 cm -1 after flash photolysis of benzene and halogenobenzenes. Similar spectra of fluoro, chloro and bromo phenyl are observed after flash photolysis of disubstituted benzenes. The vibrational structure of the phenyl spectrum has been analysed in terms of two fundamental frequencies at 571 and 896 cm -1 which correspond to the e 2 g and a 1 g frequencies of the B 2 u state of benzene. The ground state of phenyl has a π 6 n electronic configuration and the observed transition is interpreted as 2 A 1 → 2 B 1 resulting from a π → n excitation.


2021 ◽  
Author(s):  
Chandana C.W. Kananke-Gamage ◽  
Farshid Ramezanipour

The effect of the electronic configuration of transition metal on electrocatalytic activity, charge transport, and magnetic properties is demonstrated through investigation of Sr2LaFeMnO7 and Sr2LaCoMnO7. The two compounds are isostructural...


Sign in / Sign up

Export Citation Format

Share Document