Electronic Properties of Oxidized Graphene: Effects of Strain and an Electric Field on Flat Bands and the Energy Gap

Author(s):  
M. Alihosseini ◽  
S. Ghasemi ◽  
S. Ahmadkhani ◽  
M. Alidoosti ◽  
D. Nasr Esfahani ◽  
...  
2018 ◽  
Vol 32 (24) ◽  
pp. 1850263 ◽  
Author(s):  
Li-Feng Jiang ◽  
Lei Xu ◽  
Jun Zhang

The armchair graphene nanoribbons (AGNRs) can be either semiconducting or metallic, depending on their widths. We investigate the electronic properties of AGNRs under uniaxial strain and electric field. We find that the bulk gap decreases gradually with the increase of the electric field for semiconducting case, but it cannot vanish completely in an appropriate range, which is similar to that of a single uniaxial strain. However, a suitable combination of electric field and uniaxial strain can lead to that the energy gap completely vanishes and reopens. For the metallic case, the bulk gap can display the same opening and closing behavior under an electric field and uniaxial strain. Finally, an interesting quantum phenomenon is obtained by applying a perpendicular magnetic field.


Author(s):  
Jose Eduardo Barcelon ◽  
Marco Smerieri ◽  
Giovanni Carraro ◽  
Pawel Wojciechowski ◽  
Luca Vattuone ◽  
...  

Graphene nanoribbons (GNRs) are at the frontier of research on graphene materials since the 1D quantum confinement of electrons allows for the opening of an energy gap.


2019 ◽  
Vol 716 ◽  
pp. 155-161 ◽  
Author(s):  
Khang D. Pham ◽  
Nguyen N. Hieu ◽  
Le M. Bui ◽  
Huynh V. Phuc ◽  
Bui D. Hoi ◽  
...  

2013 ◽  
Vol 27 (26) ◽  
pp. 1350152 ◽  
Author(s):  
AKSHU PAHUJA ◽  
SUNITA SRIVASTAVA

The structural and electronic properties of endohedral fullerenes formed by encapsulation of each of the group V elements inside the buckminsterfullerene cage have been investigated. The calculations reveal that all these species are thermodynamically stable, though the formation of Sb@C 60 and Bi@C 60 is slightly endothermic. The central atom preserves its electronic configuration and the quartet state. The energy gap and energy levels are perturbed by the inclusion of a foreign atom. The band gap of Sb@C 60 and Bi@C 60 is found to be significantly smaller than pristine C 60, suggesting the reactivity of these complexes.


2021 ◽  
Author(s):  
Dahua Ren ◽  
Qiang Li ◽  
Kai Qian ◽  
Xingyi Tan

Abstract Vertically stacked heterostructures have received extensive attention because of their tunable electronic structures and outstanding optical properties. In this work, we have studied the structural, electronic and optical properties of vertically stacked GaS-SnS2 heterostructure under the frame of density functional theory. We find that the stacked GaS-SnS2 heterostructure is a semiconductor with suitable indirect band gaps of 1.82 eV, exhibiting a type-II band alignment for easily separating the photo-generated carriers. The electronic properties of GaS-SnS2 heterostructure can be effectively tuned by external strain and electric field. The optical absorption of GaS-SnS2 heterostructure is more enhanced by comparison with the GaS monolayer and SnS2 monolayer in the visible light. Our results suggest that GaS-SnS2 heterostructure is a promising candidate for the photocatalyst and photoelectronic devices in visible light.


Author(s):  
Xiaoxia Wang ◽  
Fanfan Du ◽  
Yingmei Zhang ◽  
Jie Yang ◽  
Xiaoli Li ◽  
...  

The intercalation of hydrogen ions and lithium ions in MoO3 films is realized by acidic ionic liquid gating, which modifies the electronic and optical properties of MoO3 films, is promising for designing multifunctional devices.


Sign in / Sign up

Export Citation Format

Share Document