scholarly journals Quantum-Dot Single-Electron Transistors as Thermoelectric Quantum Detectors at Terahertz Frequencies

Nano Letters ◽  
2021 ◽  
Author(s):  
Mahdi Asgari ◽  
Dominique Coquillat ◽  
Guido Menichetti ◽  
Valentina Zannier ◽  
Nina Diakonova ◽  
...  
2017 ◽  
Vol 26 (12) ◽  
pp. 1750201
Author(s):  
Hamed Aminzadeh ◽  
Mohammad Ali Dashti ◽  
Mohammad Miralaei

Room-temperature analog-to-digital converters (ADCs) based on nanoscale silicon (Si) quantum dot (QD)-based single-electron transistors (SETs) can be very attractive for high-speed processors embedded in future generation nanosystems. This paper focuses on the design and modeling of advanced single-electron converters suited for operation at room temperature. In contrast to conventional SETs with metallic QD, the use of sub-10-nm Si QD results in stable operation at room temperature, as the observable Coulomb blockade regime covers effectively the higher temperature range. Si QD-based SETs are also fully compatible with advanced CMOS technology and they can be manufactured using routine nanofabrication steps. At first, we present the principles of operation of Si SETs used for room-temperature operation. Possible flash-type ADC architectures are then investigated and the design considerations of possible Coulomb oscillation regimes are addressed. A modified design procedure is then introduced for [Formula: see text]-bit SET-based ADCs, and validated through simulation of a 3-bit ADC with a sampling frequency of 5 GS/s. The ADC core is comprised from a capacitive signal divider followed by three periodic symmetric functions (PSFs). Simulation results demonstrate the stability of output signals at the room-temperature range.


1996 ◽  
Vol 11 (11S) ◽  
pp. 1493-1497 ◽  
Author(s):  
M Dilger ◽  
R J Haug ◽  
K Eberl ◽  
K von Klitzing

2009 ◽  
Vol 4 (2) ◽  
pp. 53-57
Author(s):  
Artur Pogosov ◽  
Maxim Budantsev ◽  
Andrey Shevyrin ◽  
Alexey Plotnikov ◽  
Ashat Bakarov ◽  
...  

The Coulomb blockade effect is studied in a single-electron transistor – quantum dot, separated from source and drain areas by tunnel junctions. Peculiarity of the transistor is that it is made on the basis of semiconducting membrane, separated from the suffer. Separating the transistor from the suffer having high dielectric constant leads to the drastic decrease in the quantum dot capacity С and, therefore, to the increase in the Coulomb gap 2 e C/ . This value is important since it determines the upper limit of the transistor working temperature. A direct comparison of the Coulomb gaps before and after separating from the suffer shows that it increases from 40 K (in temperature units) for conventional transistor to 150 K for the «suspended» one. High value of the Coulomb gap has made it possible to observe clear diamond-like structure of condactance dependence on the gate and source-drain voltages, specific for the Coulomb blockade, while typical temperature of this kind of measurements on conventional single-electron transistors is about hundreds of millikelvins. An additional blockade effect, different from the conventional Coulomb blockade is observed. The nature of this effect can be connected with additional mechanical degrees of freedom of the transistor (elastic deformations).


2005 ◽  
Vol 03 (supp01) ◽  
pp. 163-172
Author(s):  
DAVID M. T. KUO

We propose to employ a selective formation method to embed an isolated self assembled quantum dot into a n-i-n junction to implement single electron transistors (SETs). The absorption and emission spectrum of SETs are theoretically studied by the Keldysh Green function method. The electronic levels and Coulomb interactions of electrons of InAs quantum dot (QD) are evaluated by an effective mass model. It is found that Coulomb interaction and level mixing in the many body open system lead to double peaks associated with the intraband transitions involving two lowest levels of the QD. We can electrically control the SETs as a single-photon source and double-photon source for 10 μm wavelength. The single photon source can be used in the application of quantum cryptograph, and the double-photon source can be utilized in the teleportation.


2003 ◽  
Author(s):  
Koji Kawasaki ◽  
Yasunori Kitaichi ◽  
Misaichi Takeuchi ◽  
Yoshinobu Aoyagi

Sign in / Sign up

Export Citation Format

Share Document