Emerging Microfluidic Technologies for the Detection of Circulating Tumor Cells and Fetal Nucleated Red Blood Cells

2021 ◽  
Vol 4 (2) ◽  
pp. 1140-1155
Author(s):  
Xiaoyun Wei ◽  
Keke Chen ◽  
Shishang Guo ◽  
Wei Liu ◽  
Xing-Zhong Zhao
2022 ◽  
Author(s):  
Thais Pereira-Viega ◽  
Susana B. Bravo ◽  
Antonio Gomez-Tato ◽  
Celso Yáñez-Gómez ◽  
Carmen Abuín ◽  
...  

Metastasis is the primary cause of death for most breast cancer patients who succumb to the disease. During the haematogenous dissemination, circulating tumor cells interact with different blood components. Thus, there are micro-environmental and systemic processes contributing to cancer regulation. We have published that Red Blood Cells (RBCs) that accompany circulating tumor cells have prognostic value in metastatic breast cancer patients. Although the principal known role of RBCs is gas transport, it has been recently assigned additional functions as regulatory cells on circulation. Hence, to explore their potential contribution to tumor progression, we characterized the proteomic composition of RBCs from 53 breast cancer patients, compared with 33 healthy donors. RBCs from breast cancer patients showed a different proteomic profile compared to healthy donors. The differential proteins were mainly related to extracellular components, proteasome, and metabolism. Besides, LAMP2 emerge as a new RBCs marker with diagnostic and prognostic potential for metastatic patients. Seemingly, RBCs are acquiring modifications in their proteomic composition that probably represents the systemic cancer disease, conditioned by the tumor microenvironment.


2019 ◽  
Vol 12 (1) ◽  
pp. 53-58
Author(s):  
Shivendra Vikram Singh ◽  
◽  
Megalamane Supreetha ◽  
Satyavathi R Alva ◽  
◽  
...  

Author(s):  
Itamar Nitzan ◽  
Calum T. Roberts ◽  
Risha Bhatia ◽  
Francis B. Mimouni ◽  
Arvind Sehgal

Objective The study aimed to assess the association of nucleated red blood cells (NRBC), a surrogate of intrauterine hypoxia, and elevated pulmonic vascular resistance (E-PVR) and oxygen requirement after minimally invasive surfactant therapy (MIST). Study Design Retrospective study of a cohort of preterm neonates that received MIST in a single unit. Results NRBC were measured in 65 of 75 (87%) neonates administered MIST during the period. In total, 22 of 65 (34%) infants had pre-MIST echocardiography (ECHO).Neonates with elevated NRBC (predefined as >5 × 109/L, n = 16) required higher post-MIST fraction of inspired oxygen (FiO2) than neonates with normal NRBC (<1 × 109/L, n = 17; FiO2 = 0.31 ± 0.10 and 0.24 ± 0.04, respectively, p = 0.02).NRBC correlated positively with % of time in right to left ductal shunt (r = 0.51, p = 0.052) and inversely with right ventricular stroke volume (r = −0.55, p = 0.031) and time to peak velocity to right ventricular ejection time ratio (r = −0.62, p < 0.001). Conclusion Elevated NRBC are associated with elevated FiO2 after MIST and elevated E-PVR. Intrauterine hypoxia may impact postnatal circulatory adaptations and oxygen requirement. Key Points


2021 ◽  
pp. 153537022110132
Author(s):  
Shu-Qin Liu ◽  
Xiao-Ye Hou ◽  
Feng Zhao ◽  
Xiao-Ge Zhao

Heart regeneration is negligible in humans and mammals but remarkable in some ectotherms. Humans and mammals lack nucleated red blood cells (NRBCs), while ectotherms have sufficient NRBCs. This study used Bufo gargarizan gargarizan, a Chinese toad subspecies, as a model animal to verify our hypothesis that NRBCs participate in myocardial regeneration. NRBC infiltration into myocardium was seen in the healthy toad hearts. Heart needle-injury was used as an enlarged model of physiological cardiomyocyte loss. It recovered quickly and scarlessly. NRBC infiltration increased during the recovery. Transwell assay was done to in vitro explore effects of myocardial injury on NRBCs. In the transwell system, NRBCs could infiltrate into cardiac pieces and could transdifferentiate toward cardiomyocytes. Heart apex cautery caused approximately 5% of the ventricle to be injured to varying degrees. In the mildly to moderately injured regions, NRBC infiltration increased and myocardial regeneration started soon after the inflammatory response; the severely damaged region underwent inflammation, scarring, and vascularity before NRBC infiltration and myocardial regeneration, and recovered scarlessly in four months. NRBCs were seen in the newly formed myocardium. Enzyme-linked immunosorbent assay and Western blotting showed that the levels of tumor necrosis factor-α, interleukin- 1β, 6, and11, cardiotrophin-1, vascular endothelial growth factor, erythropoietin, matrix metalloproteinase- 2 and 9 in the serum and/or cardiac tissues fluctuated in different patterns during the cardiac injury-regeneration. Cardiotrophin-1 could induce toad NRBC transdifferentiation toward cardiomyocytes in vitro. Taken together, the results suggest that the NRBC is a cell source for cardiomyocyte renewal/regeneration in the toad; cardiomyocyte loss triggers a series of biological processes, facilitating NRBC infiltration and transition to cardiomyocytes. This finding may guide a new direction for improving human myocardial regeneration.


Sign in / Sign up

Export Citation Format

Share Document