Hydrolyzation-Triggered Ultralong Room-Temperature Phosphorescence in Biobased Nonconjugated Polymers

Author(s):  
Biao Zhao ◽  
Shenghua Yang ◽  
Xueyong Yong ◽  
Jianping Deng
2020 ◽  
Author(s):  
Yunzhong Wang ◽  
Saixing Tang ◽  
Yating Wen ◽  
Shuyuan Zheng ◽  
Bing Yang ◽  
...  

<div>Persistent room-temperature phosphorescence (p-RTP) from pure organics is attractive </div><div>due to its fundamental importance and potential applications in molecular imaging, </div><div>sensing, encryption, anticounterfeiting, etc.1-4 Recently, efforts have been also made in </div><div>obtaining color-tunable p-RTP in aromatic phosphors5 and nonconjugated polymers6,7. </div><div>The origin of color-tunable p-RTP and the rational design of such luminogens, </div><div>particularly those with explicit structure and molecular packing, remain challenging. </div><div>Noteworthily, nonconventional luminophores without significant conjugations generally </div><div>possess excitation-dependent photoluminescence (PL) because of the coexistence of </div><div>diverse clustered chromophores6,8, which strongly implicates the possibility to achieve </div><div>color-tunable p-RTP from their molecular crystals assisted by effective intermolecular </div><div>interactions. Here, inspirited by the highly stable double-helix structure and multiple </div><div>hydrogen bonds in DNA, we reported a series of nonconventional luminophores based on </div><div>hydantoin (HA), which demonstrate excitation-dependent PL and color-tunable p-RTP </div><div>from sky-blue to yellowish-green, accompanying unprecedentedly high PL and p-RTP </div><div>efficiencies of up to 87.5% and 21.8%, respectively. Meanwhile, the p-RTP emissions are </div><div>resistant to vigorous mechanical grinding, with lifetimes of up to 1.74 s. Such robust, </div><div>color-tunable and highly efficient p-RTP render the luminophores promising for varying </div><div>applications. These findings provide mechanism insights into the origin of color-tunable </div><div>p-RTP, and surely advance the exploitation of efficient nonconventional luminophores.</div>


2019 ◽  
Author(s):  
Shuyuan Zheng ◽  
Taiping Hu ◽  
Xin Bin ◽  
Yunzhong Wang ◽  
Yuanping Yi ◽  
...  

Pure organic room temperature phosphorescence (RTP) and luminescence from nonconventional luminophores have gained increasing attention. However, it remains challenging to achieve efficient RTP from unorthodox luminophores, on account of the unsophisticated understanding of the emission mechanism. Here we propose a strategy to realize efficient RTP in nonconventional luminophores through incorporation of lone pairs together with clustering and effective electronic interactions. The former promotes spin-orbit coupling and boost the consequent intersystem crossing, whereas the latter narrows energy gaps and stabilizes the triplets, thus synergistically affording remarkable RTP. Experimental and theoretical results of urea and its derivatives verify the design rationale. Remarkably, RTP from thiourea solids with unprecedentedly high efficiency of up to 24.5% is obtained. Further control experiments testify the crucial role of through-space delocalization on the emission. These results would spur the future fabrication of nonconventional phosphors, and moreover should advance understanding of the underlying emission mechanism.<br>


2015 ◽  
Vol 15 (4) ◽  
pp. 2039-2045 ◽  
Author(s):  
Simone d’Agostino ◽  
Fabrizia Grepioni ◽  
Dario Braga ◽  
Barbara Ventura

2021 ◽  
Vol 417 ◽  
pp. 129175
Author(s):  
Shenghui Han ◽  
Gang Lian ◽  
Xu Zhang ◽  
Zhaozhen Cao ◽  
Qilong Wang ◽  
...  

Author(s):  
Jian-Ce Jin ◽  
Yang-Peng Lin ◽  
Yi-Heng Wu ◽  
Liaokuo Gong ◽  
Nan-Nan Shen ◽  
...  

Two chlorobismuthate hybrids incorportating ionic liquid cations (ILCs) with second-level room-temperature phosphorescence (RTP) were obtained, namely [Emim]BiCl4(bp2do) (1) and [Emmim]BiCl4(bp2do) (2) (Emim = 1-ethyl-3-methylimidazolium, Emmim = 1-ethyl-2,3-dimethylimidazolium, bp2do = 2,2'-bipyridyl-1,1'-dioxide)....


2021 ◽  
Author(s):  
Ping-Ru Su ◽  
Tao Wang ◽  
Pan-Pan Zhou ◽  
Xiao-Xi Yang ◽  
Xiao-Xia Feng ◽  
...  

Abstract Design and engineering of highly efficient emitting materials with assembly-induced luminescence, such as room temperature phosphorescence (RTP) and aggregation-induced emission (AIE), have stimulated extensive efforts. Here, we propose a new strategy to obtain size-controlled Eu3+-complex nanoparticles (Eu-NPs) with self-assembly induced luminescence (SAIL) characteristics without encapsulation or hybridization. Compared with previous RTP or AIE materials, the SAIL phenomena of increased luminescence intensity and lifetime in aqueous solution for the proposed Eu-NPs are due to the combined effect of self-assembly in confining the molecular motion and shielding the water quenching. As a proof of concept, we also show that this system can be further applied in bioimaging, temperature measurement and HClO sensing. The SAIL activity of the rare-earth (RE) system proposed here offers a further step forward on the roadmap for the development of RE light conversion systems and their integration in bioimaging and therapy applications.


Small ◽  
2021 ◽  
pp. 2005449
Author(s):  
Heqi Gao ◽  
Zhiyuan Gao ◽  
Di Jiao ◽  
Jingtian Zhang ◽  
Xiaolin Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document